MRI Physics:

MRI Basics

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

MRI is Amazing!

What is an MR Image?

												1					
				1	P	2	mu	110		in.		2	3				
			- 7	F	1			ele-	B	P			2	\mathcal{N}			
			Ζ.	25	\mathbf{A}	N.		1	й.)			r	\mathbf{Z}	-	٩.		
		7	Ε.)		10	3	n)	ļД			2		Ø?	3	3		
		B			Ę.	21	E?		18		E î		17				
	7		53				-	23		123				11	R		
	þ.	E.		17	ŝ	B						1					
				15			ų,	ł	L	đ					R.	1	
7	E	21	65	12	B			[Č.	1	R ₂		E,			1	
7.	(I		8		8	5	Ľ,		A		3		2			13	٩.
	29			57		P	1							81	7	IJ	N.
		55		8.2		-8		87					7	23			
			Ψ.			5			7		ġ,						
				er.	12		1. 1.	\mathbf{N}					¥1	1	6		
		2	РY,		1	12	12	, Э	₽,	18	2	1	谬		2		
И	R	18		В.	17				12		h.		ų			2	7
N						2		100	δ.,		B.	1	i.			12	
	L)		5	<u>A</u>	1				64			đ.	÷Ĉ			7	
	N,			6	Ŷ			1			Ð	\mathcal{L}	2	S.	H.		
	. 1	N	65	8	1	5	Ц¥.	1		\mathcal{O}	Į,	b,		12	7		
		Ŋ			4	N,	H	67		5	7			D			
			N			1	58			j.	N,		9				
							E.	5				a a a a a a a a a a a a a a a a a a a					
									-								

2	102	54	51	49	97
5	103	52	48	47	99
3	105	49	54	52	50
1	99	102	47	50	51
2	5	100	96	101	99
1	3	5	2	1	3

What is an MR Image?

						1											
				J	67	20	mu	110		in.		2	3				
			- 7	P	Ċ.	3	N	de.	B.	Ľ			2	N			
			Ζ.			1		1	61			r		-	٩.		
		7	Ε.		100			,щ					\mathcal{P}^{r}		3		
		11			Ę.	21	P?		11								
			53							\mathbb{C}_{2}	14			10	b.	١,	
	Ŀ	E.		17	S				1								
				5	1		1		Į.	Å					R.		
7	E		12	92	\mathbb{P}^{1}		÷.,		ŝ.	1	Rg		E.			1	
Ϊ.	E.		8	14	民		Ľ,		A	57		13	2			13	1
	3			57		P.	1			8.			12	81	7	IJ	
Ľ,		25			8 1	4		87		Ę.			7	23		22	
			Ψ.						٦		Ē.	-	D.				I. 1
	5.			Ш.	12		1. 1.	X.		12	1			de.	6		
		2	РY,		1	12		, 1	₽,	A.	P	1	i B	15			
H	R	B		B.	8				21		<u>b.</u>		4				
N				Q.		2		19	٩.,		13	1	í.			12	
				<u>è</u> l				3	£14	2.	38	£.	÷Ĉ		1	\mathbf{Z}	
	N,			K.	Ţ.							\mathbb{C}	2	¥.	M		
	. 1	N	E.	Ð,	1					5	26	8		72	7		
		N,				Ň	H	E	Ŀ		7		12	9			
			N	N.		1	6	Į.			N,	17	9	1			
							E.	6				a de la					
									-								

2	102	54	51	49	97
5	103	52	48	47	99
3	105	49	54	52	50
1	99		47	50	51
2	5		96	101	99
1	3	5	2	1	3

What do we care about in MR images?

- Contrast \rightarrow high between tissues of interest
- Resolution \rightarrow high, small voxels
- Signal-to-Noise Ratio (SNR) \rightarrow high
- Data Collection Time \rightarrow rapid

Contrast in MRI

"T1 Weighted":

"Proton Density (PD) Weighted":

"T2 Weighted":

MRI Data Collection

Image

 N_v

 N_v

MRI Data Collection Time

Ny x (Time per Line) = Total Acquisition Time Ny x TR = Total Acquisition Time Ny x TR x N_{ave} = Total Acquisition Time

Signal-to-Noise Ratio

- SNR is a measure of the ratio of true signal to the amount of unwanted, erroneous signal collected
- SNR can be enhanced by collecting more data, repeating experiment (N_{ave}), filtering, etc

SNR

Magnetization Basics

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

MRI Signals Come from Protons

MRI Signals Come from Protons

Magnetic Field in MRI

 B_0

Magnetization Vector in Magnetic Field

Magnetization along magnetic field

Magnetization in z-direction

Longitudinal Magnetization

Cannot be detected

Magnetization Vector in Magnetic Field

Apply RF Pulse to Tip Magnetization into x-y plane Longitudinal Magnetization \rightarrow Transverse Magnetization

Precession

Gyromagnetic Ratio

 $B_0=1.5T \rightarrow \omega = 64 \text{ MHz} \rightarrow 64 \text{ million rounds/sec}$

 $B_0=3.0T \rightarrow \omega = 128 \text{ MHz} \rightarrow 128 \text{ million rounds/sec}$

Stronger Magnetic Field = Faster precession

MRI Signal Detection

Once the magnetization M is tipped away from B₀ direction:

- Net Magnetization precesses
- Conductor nearby (receiver coil) sees changing magnetic field
- Current is induced in coil via Faraday's Law of Induction

What does the signal look like?

Altering flip angle changes measured signal

Apply RF Pulse to Tip Magnetization into x-y plane Longitudinal Magnetization \rightarrow Transverse Magnetization

Precession

What does the signal look like?

Recap

- Main Magnetic field leads nuclei to align parallel/antiparallel to field
- Sum over all protons = magnetization vector
- Higher $B_0 \rightarrow$ More magnetization \rightarrow Higher Signal
- Magnetization vector points along direction of B₀: Longitudinal Magnetization
- RF pulse can be used to tip magnetization into the x-y plane: Transverse Magnetization
- Only transverse magnetization can be detected by receiver coil
- 90° pulse leads to the largest signal amplitude
 - \rightarrow smaller flip angles can also be used
- Magnetization precesses at the Larmor frequency in transverse plane
- Signal = sinusoidal shape

