MRI Physics:

T1 Relaxation

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

We tip magnetization into x-y plane for signal acquisition

Apply RF pulse to tip magnetization from the z-axis into x-y plane Longitudinal Magnetization → Transverse Magnetization

Spin Lattice Relaxation: T₁

Spin Lattice Relaxation: T₁

Different Tissues Have Different T₁ Values

- Red \rightarrow Short T1
- Blue \rightarrow Long T1

Different Tissues Have Different T₁ Values

- Red \rightarrow Short T1
- Blue \rightarrow Long T1

Plot of Magnetization on z-axis after 90° Pulse

Info about T1 times

- Not easily explained in terms of tissue content (molecular tumbling rates)
- Water content
- Measured in seconds or ms
- Different at different main field strengths
- Pure water \rightarrow Long T1
- Fat \rightarrow Shorter T1

Tissue	T1 (msec)
Water/CSF	4000
Gray matter	900
Muscle	900
Liver	500
Fat	250
Tendon	400
Proteins	250
Ice	5000

Precession with T1 relaxation

Rotating Reference Frame

Lab Reference Frame

Rotating Reference Frame

T1 Relaxation Summary

- T1 Relaxation (Spin-Lattice Relaxation)
 →Exponential recovery of Transverse to Longitudinal Magnetization
- Different tissues have different T1 relaxation rates
- ~ 250 ms 5 seconds
- Main contrast mechanism in clinical imaging
- Pure water has a long T1

MRI Physics:

T2 Relaxation

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

Spin-Spin Relaxation: T₂ (rotating reference frame)

Х

We see vector sum of magnetization as signal

Spin-Spin Relaxation: T₂

- Magnetization precesses according to Larmor frequency
- Precession freq of individual spins can be slightly altered due to small local magnetic field fluctuations
 - \rightarrow Spins fan out
 - \rightarrow "Dephasing"
- When measured together, this dephasing leads to signal loss
- Occurs at the same time (and faster than) T1 relaxation

Different tissues have different T₂ values

MEDICINE

х

Х

Plot of Magnetization on xy-axis after 90° Pulse

Facts about T₂ Relaxation

- Not easily explained in terms of tissue content Much shorter in "solids"
- Measured in seconds or ms
- Different at different main field strengths
- Always shorter than T1
- Pure water \rightarrow Long T2

Tissue	T1 (msec)	T2 (msec)
Water/CSF	4000	2000
Gray matter	900	90
Muscle	900	50
Liver	500	40
Fat	250	70
Tendon	400	5
Proteins	250	0.1
Ice	5000	0.001

More Facts about T₂ Relaxation

- T2 relaxation is a result of disorder in the system, not loss of magnetization
 → Cannot be recovered
- T2' is a result of inhomogeneities in the magnetic field metal clips/objects nearby, level of iron-content in tissue, differences in "magnetic susceptibility" (eg. bone vs air vs tissue)
 Tissue 11(Water/CSF 4

 \rightarrow Can in some cases be recovered

 T2 vs. T2* contrast 1/T2* = 1/T2 + 1/T2' T2* always shorter than T2

Tissue	T1 (msec)	T2 (msec)
Water/CSF	4000	2000
Gray matter	900	90
Muscle	900	50
Liver	500	40
Fat	250	70
Tendon	400	5
Proteins	250	0.1
Ice	5000	0.001

T2* Relaxation: decay of transverse magnetization following an RF-pulse (aka free induction decay 'FID') An example of "Long" T2*~20-40ms

"Isochromats" (sub-voxel group of spins in equivalent local field)

Net Longitudinal Magnetization Net Transverse Magnetization (signal)

LongT2star__T2s_40__T2_100__T1_1000_GE.avi

T2* Relaxation

An example of "Short" T2*~1-10ms

Isochromats

Net Longitudinal Magnetization Net Transverse Magnetization (signal)

VShortT2star__T2s_6__T2_100__T1_1000_GE.avi

Recap: Magnetization

- Aligns along z-axis in direction of B₀ field
- Can be tipped into x-y plane using an RF pulse
- Only transverse magnetization gives rise to signal
- Once in x-y plane, will precess at Larmor frequency (different for fat/H₂0)
- Slowly recovers back to the z-axis according to T1 value
 → Loss of transverse magnetization, gain in longitudinal magnetization
- Dephases in x-y plane according to T2/T2* value
 → Loss of transverse magnetization

All Effects Together (Precession, T1 and T2 Relaxation)

Proton Density

The more protons, the more signal

Differences in Proton Density give rise to contrast

Differences in Proton Density give rise to contrast

But it is usually boring as most soft tissues have similar water content

Summary of Proton Density (p)

- In addition to T1 and T2, MR images all contain "proton density" contrast
- Called Proton Density, M_0 , ρ ... all the same
- MRI signal is directly proportional to "number of protons" in a voxel
- Can also be used as a contrast mechanism (but usually fairly boring)

