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From brain regions to brain graphs

Neurosynth — “working memory” > Network organization of brain areas

Automated meta-analysis of 901 studies

The Graph-theoretic
Approach

* enables characterization of
the brain’s connectivity
structure

* derives measures that
assess global and local
features that may be
important for network
function




What is a graph?

adjacency matrix

node edge

* undirected graph —> symmetric matrix
* unweighted graph —> binary matrix
 diagonal is zero

» Any network can be represented as a collection of nodes connected by edges.



Directed

Undirected
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Procedure

Extracting and denoising Calculating correlation matrix
time courses

Defining ROIs

ROI
Correlation r

Calculating network measures

path length

Thresholding

Clustering coefficient

Modularity

o 2R




Thresholding and binarizing an adjacency matrix

E.g., functional connectivity connectivity data

Unthresholded Thresholded Binarized
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Visualizing adjacency matrices

E.g., structural connectivity data

Modular structure L vs R hemisphere

Anatomical projection Modules Intra-hemispheric connectivity

Connectivity of each region with
homologue in the other
hemisphere




Common types of visualizations

Circular projection/
connectogram

Anatomical projection Force-directed projection

5.7

 Fronto-parietal
® Cingulo-opercular
@ Default-mode

@ Visual

® Sensorimotor



Modularity — Key topological property

Description (Newman & Girvan, 2004)
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Detection
* community detection algorithms



Example - Air Transportation Network

(3,618 nodes; 28,287 edges)
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Cognitive modules and global workspace

Evaluative

Modularity of mind (Fodor, 1983)

- Systems

Functional segregation & integration . (FOCUSING)

High-level cognitive functions (eg. WM) -
rely more on a global workspace than
on segregated modular functions.

Modules - spatially localized and
include specialized brain areas
(visual, auditory, motor ...)

Dehaene et al., 1998



Large-scale functional organization of the brain

Resting state clusters of Yeo et al., 2011 Resting state clusters of Power et al., 2011

. Visual @ Cingulo-opercular . Cingulo-opercular
.' Default O Fronto-parietal . Default O Fronto-parietal

The 10 ICA components of Smith et al, 2009

M o & &

Power et al., 2014



Node degree & strength

* Binary undirected network

* Degree of node i: ki = ZA;‘;-
» # of edges connecting node i with all other nodes J#i

* Mean degree of an undirected network: (k) _iik‘
* mean of all node degrees N~

* Weighted undirected network
e Strength of node i:

6 — ..
* sum of weights of edges attached to node i I i i
* Positive vs. negative node strength
* signed weighted networks (e.g., correlation) §; = Z wi}r, and s; = —Z Wi .
jF# j#i

Fornito et al., 2016



Node roles: Hubs

Caution: Association between node strength and module size in correlation-based FC
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Power et al., 2013



Node roles

ki(m;) — k(m;)

* Within-module degree z-score ; —

e Difference between Olk(m;)

* Within-module degree for node i (# connections linking node i to other nodes in the
same module m)

* Mean within-module degree of nodes in the same module as node i
 Divided by standard deviation of k(m) values across all nodes in module m

M 2
k:(m
* Participation coefficient Pi=1-) ( 53. )>
e How a node’s links are distributed m=1 I
across different modules
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Brain modules and regional node roles

Resting state data, 90 anatomically defined brain regions
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Variation of participation coefficient across the brain

During resting-state Across tasks

Across-network variable connectivity

5% edge density analysis: communities and participation coefficients 0.80 7
high .
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Experimental evidence: Neuropsychological deficits are more consistent and
widespread in patients with lesions to areas with high community participation.

Participation coefficient/community density Degree

(a) 2 a (b)
High-degree group High-participation group

Domains 123 456 7 8 91011 1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Shortest path

Efficiency

P 1 1 Z 1
lob — 7, — | 7 -
* Global efficiency "L N(N=1) 41

 Efficiency of information exchange in a parallel system

1 1
. Enodal(J) =) .
* Nodal efficiency nodal /) = 1= lZij
* Measures node integration within network
1 1

~ Ng,(Ng,—1) <= Ly’

i, heG;

o Elnc(f)
* Local efficiency

* Measures integration between the immediate neighbors
of a given node



Network measures interpretation

Modularity -> network distinctiveness,
functional segregation

1
Q= ﬁZ[Aij — yei;16(my, m;)
ij

Low Medium High



Network measures interpretation

Modularity -> network distinctiveness,

functional segregation low modularity = low functional

1 P
tj



Network measures interpretation

* Global efficiency -> graph-wide integration,
rapid information exchange

£ _ 1 z 1
9lb T N(N — 1) L Ly

l¥]

Low Medium



Network measures interpretation

* Global efficiency -> graph-wide integration,
rapid information exchange low Eglob —> low capacity for

1 z 1 information exchange
PTN(N -1 L Ly

Eg

%]



Network measures interpretation

* Local efficiency -> regional integration,
fault tolerance

1 1
Eloc(i) = z T >
NGi(NGi - 1) j)hEGiLJ'h Low Medium High




Network measures interpretation

* Local efficiency -> regional integration,

e-ult tolerance low E, . = low cost-efficiency

z 1
Ljh

1
Eppc(i) =
loc( ) NGi(NGi _ 1) =y



Comparing partitions

* Mutual information: degree to which knowing the community
assignment of a node in partition Y reduces uncertainty about that

node’s community assignment in partition X

A " P B Within-Subject Partition
Between-Groups Partition Similarity Similarity over Time

* Normalized mutual information o N Ol
QMI(X Y) h * Actual Data1 ' 2 | HLI
MF(X, Y) — ' ) 05 | o Ig?;f;;mized 1 1 06 f -E- T
H(X)+H(Y) ' l
S 04| ’ ’ S o5 | !
. L . . < o : < X
* Variation of information ' ' H
(metric of partition distance) | nl N
VI(X,Y):ff(X)+ff(Y)—2MI(X,Y) 02.?%%?%?1—:%%”?%?%%?%%%- N . .
Threshold (%) Threshold (%) Group

lordan et al., 2018



Methodological issues




Procedure

Extracting and denoising Calculating correlation matrix
time courses

Defining ROIs

ROI
Correlation r

Calculating network measures

path length

Thresholding

Clustering coefficient

Modularity

o 2R




@The source for neuroinformatics tools & resources

TO O | S OONITRC {5 Neuroimaging data repositary

@Elwd computing environment

Artifact Detection Tools (ART)

i Toolbox for post-processing fMRI data. Includes software for

: comprehensive analysis of sources of artifacts in timeseries data
including spiking and motion. Most compatible with SPM processing,
but adaptable for FSL as well.

------
----------------

CONN : functional connectivity toolbox

CONN is a Matlab-based cross-platform software for the computation,
display, and analysis of functional connectivity in fMRI (fcMRI).

CONN includes a rich set of connectivity analyses (seed-based
correlations, ROI-to-ROIl graph analyses, group ICA, masked ICA,
generalized PPI, ALFF, ICC, GCOR, LCOR, etc.) in a simple-to-use and
powerful software package

Brain Connectivity Toolbox

The Brain Connectivity Toolbox (brain-connectivity-toolbox.net) is a MATLAB toolbox for
complex-network (graph) analysis of structural and functional brain-connectivity data sets.
Several people have contributed to the toolbox and users are welcome to contribute new
functions with due acknowledgement.




|[dentifying outlier volumes (ART

StdDev of data is:
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Choosing ROl atlas

Anatomical

Tzurio-Mazoyer et al., 2002
Desikan et al., 2006

Functional

Meta-analytical Data-driven

&

Dosenbach et al., 2010
Power et al., 2011

Yeo et al., 2011
Craddock et al., 2012

Multi-modal

Glasser et al., 2016



Physiological noise

Signal vs. Noise s
ZZZ/\/\/\/

Signal Intensity Mask e
ubk/u \Jw\w uum m&

WM and CSF Masks

Excluding ROIs that lack good coverage.




Removing physiological and other sources of noise

* aCompCor (Behzadi et al., 2007) temporal covariates:
* signal extracted from noise ROIs (white matter, CSF) (PCA)
* motion parameters (+ derivatives)
* regressors for outlier volumes (‘scrubbing’)

* band-pass filtering — e.g. [.01 .1]
* detrending

* despiking




Issues re: Thresholding

* |s it necessary to threshold or binarize?

 Comparing partitions between 2 groups:
* Weight-based/absolute thresholding

* Measures may be influenced by trivial differences in the
number of edges.

* Density/’cost’-based thresholding
* Adequate if groups are matched in edge weight-distribution.
e Otherwise, may be influenced by spurious edges.

e Use stringent thresholds

 False positives are more detrimental than false
negatives!

Zalesky, OHBM, 2017, Zalesky et al., 2016;



Community detection

Infomap Louvain

* Algorithms
e ‘Louvain’ (Blondel et al., 2008)

* ‘Infomap’ (Rosvall & Bergstrom,
2008)

Areal ROls

10% 2%
Tie density Tie density

Power et al., 2011



Community detection

A Resolution parameter, y=1.0 B Resolution parameter, v = 2.5

w*” 39 ﬂ R ‘ 'f ﬁi ”‘-E&i
* Resolution e 0 2 3
* Multi-scale community (,‘ ﬂ.\) ‘ b

detection

Brain regions

Brain regions Brain regions
Betzel & Bassett, 2016



Community detection

Algorithms
Resolution

Degeneracy

* There is no clear maximum
modularity

Consensus clustering

o
o

Modularity, Q
L=
.

o
(N

Good et al. 2010



Community detection
Original Graph Consensus Graph

( Djj=1
——  D;=3/
— D=2/
. j
D. = 1/4

* Consensus clustering

* Building a representative

(
(111
partition
(

At
I) M )
AN N
IV)M

Lancichinetti & Fortunato, 2012



Application

Received: 19 May 2020 | Revised: 21 December 2020 Accepted: 22 December 2020

DOI: 10.1002/hbm.25337

RESEARCH ARTICLE WILEY

Age differences in functional network reconfiguration
with working memory training

Alexandru D. lordan’®@ | Kyle D. Moored? | Benjamin Katz® |
Katherine A. Cooke®! | Martin Buschkuehl®* | Susanne M. Jaeggi® | Thad A. Polk® |
Scott J. Peltier®” | John Jonides® | Patricia A. Reuter-Lorenz?!



Aging influences the functional
organization of the brain

Default-mode Network Salience/Cingulo-Opercular Network

A Salience Network
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Evidence for network differences between
voung and older adults

Differences in community structure Differences in brain-wide network measures
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Modularity decreases with aging

08 |
0.7 |
06 |
05 |
04 |
03 |

Modularity

02 |
0.1 |

Similar results:

* k %k
ﬁ T |
L2 &)
= J
o 5 -,
& 1
o |
YA1 OA1 YAZ2 QA2

ICC

Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; Gallen et al., 2016;

Geerligs et al., 2015; Onoda & Yamaguchi, 2013; Song et al., 2014

0.8

0.6 ¢

Modularity

0.57 0.57

ALL YA OA

lordan et al., 2018



Change in attention/executive functions

{z-score)

2.0

15T

1.0

0.5

0.0

-0.5

Modularity Predicts Training-related Cognitive Gains

Patients with
acquired brain injury

& Cognitive training

¢ Education intervention

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Baseline modularity

Arneman et al., 2015

TOSL gain

Healthy older adults

Cognitive training
Mao-contact control

rho=0.65, p=0.01

lrho=-0.12, p=0.68

0.10 0.15 0.20 0.25 0.30

Baseline modularity

Gallen et al., 2016

Early Learning Rate

OA:rho=.51,p=.028

0.5 0.6
Baseline modularity

lordan et al., 2018



Cognitive modules and global workspace

Evaluative

* Modularity of mind (Fodor, 1983)

- Systems

* Functional segregation & integration . (FOCUSING)

High-level cognitive functions (eg. WM) -
rely more on a global workspace than
on segregated modular functions.

Modules - spatially localized and
include specialized brain areas
(visual, auditory, motor ...)

Dehaene et al., 1998



Modularity decreases with
increasing cognitive demand
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Cohen & D’Esposito, 2016 Finc et al., 2020



Salience | >

Fronto-parietal

Q
Dorsal Attention L

Visual

Subcortical [
Auditory

Cingulo-opercular | g

Motor-tactile

Ventral Attention

Default Mode

Community structure is influenced by
(large shifts in) cognitive demand

Fixation 0-Back 1-Back 2-Back

Vatansever et al., 2015

Z Apunwwon

Visual

Sensory

Fronto-
parietal

Default-
mode

Pre-task  Null Binary TernaryQuaternary Post-task
resting state resting state

Hearne et al., 2016



Task-related reconfigurations are “relatively smal

Multi-task (64 tasks)
M A
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Cole et al., 2014



Questions

* How does aging affect brain network reconfigurations elicited by
demanding cognitive tasks?

e Can these be influenced by cognitive training?



MI with Rest

reconfiguration in OA than YA
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Gallen et al., 2016



Modularity increases with training in YA

Experimental Control
3.50 -
=
= 3.25 4 'I:/
o -
s 1
= T :
= / T
o 3.00 - | + L/ :
Q 2 d /
N 4
= X
s
S 2754 1 1
-® 1-back
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2.50 +

Naive Early Middle Late

Training stage

Naive Early Middle Late

Training stage

Finc et al., 2020



How does aging affect brain network reconfigurations
elicited by demanding cognitive tasks?

* We expect:
* Overall lower modularity in older compared to younger adults

* Lower modularity during task performance compared to resting-state
* Progressively lower modularity with increasing WM load

* Open questions OA vs. YA
» Greater decrease in modularity when shifting from resting-state to task

mode?
» Steeper decrease in modularity with increasing task load?



What is the influence of cognitive training?

* We expect:
* network reorganization elicited by training not task-exposure
 task-related FC more sensitive to training than resting-state

* Open question:
* Greater modularity enhancement with training in YA vs. OA?

* Brain networks level:
* Training reconfigures primarily associative brain networks (FPN and DMN)



Present study: Design

2 weeks 2 weeks

‘ No Intervention ‘ 10-days Training ‘

fMRI fMRI fMRI
Time 1 Time 2 Time 3

Exposure Effects Training Effects



Participants

Power analysis: 20 OA and 20 YA, 94% power
(two-tailed a=.05; Ay signal 2-015), based on
Cappell et al., 2010

Initial sample:
23 0A, 23 YA

Not performing fMRI task: 1 YA (>50% NRs)
Tech errors task: 1 YA (fMRI), 1 OA (Training)
Attrition: 1 OA

A 4

A 4

Behavioral analyses:
21 0A, 21 YA

OA (N =21) YA (N = 21)
% Female 48 57
Age (S.D.) 67.81 (3.31) 21.33 (2.65)
Edu (S.D.)""  17.05 (1.63) 14.81 (1.75)
MoCA (S.D.)  28.24 (1.61) 28.48 (1.50)
"*p<.001

A 4

Tech issues fMRI: 3 OA, 1 YA

A 4

fMRI analyses:
18 OA, 20 YA




fMRI & Training Tasks:
Verbal WM (Sternberg) tasks with varying Load

fMRI (Criterion) Task:
OA: loads 1 (task mode), 4-8

1s YA: loads 1 (task mode), 5-9
+ » Set-size was randomized
F G 4s (6 blocks of 24 trials)
T ' B
Encoding K s

Maintenance 2s

Recognition



fMRI & Training Tasks:
Verbal WM (Sternberg) tasks with varying Load

1s

325 ms
x set-size

Encoding K 3s

Adaptive Training Task:

2s

Maintenance Initial set size = 3 letters

» Set-size was blocked:
increased if accuracy >86%,
decreased if <72%

(6 blocks of 14 trials/sess)

Recognition



Adaptive Training Task Results

T S S S SN
o - N
| | |

Mean WM Set Size

e OA mYA

1 2 3 4 5 6 7 8 9 10
Training Session

H~ 00 OO0 N 00 ©
T

Both groups improved in WM performance across the course of training,

YA improved more than OA,



Procedure

Extracting and de-noising Calculating correlation matrix

Defining ROIs .
time courses
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O Calculating network measures
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3 levels of analysis

 Whole brain

* Segregation/integration

* Individual networks
e Within-network communication
e Between-network communication

* Network components (sub-network)
* Pairwise relations between brain regions




1. Whole-Brain Results

Modularity: Whole-brain segregation/integration

2s

Resting State Task Mode (Load of 1)
* Rest-to-task shift ~ \
* Lower modularity in OA than YA X gl -k
* Lower modularity during task than : : cscogniton
during rest
* Greater modularity decrement with Higher modularity Lower modularity
] o
rest-to-task shift in OA than YA? X Ve
. . . ¢ .o O-OO < > .-.‘0 o\o-o
* Minimal effect of training A *s o5
: o ?
: et oy



Normalized Modularity
W
N

2.8

w
")

w
o

w
~

1. Whole-Brain Results: Modularity

Lower modularity and greater decrement with rest-to-task shift in OA

ceee®----- OA, Timel
— 0 — OA, Time2

—o0— 0A, Time3

Rest

Task (L1)
Mode

Normalized Modularity

w
0

w
)

w
IN

w
N

2.8

S ., T YA, Timel

— g — YA, Time2

—a— YA, Time,

Rest Task (L1)
Mode

* Lower overall modularity in OA vs. YA. Group: F, ;,=31.99, p<0.001, n,?=0.47

* Lower modularity during task than rest. Mode: F, ,;=141.51, p<0.001, ,?=0.8

* Greater modularity decrement with rest-to-task shift in OA. GroupxMode: F, ,;=19.14, p<0.001, ,?=0.35




1. Whole-Brain Results

Modularity: Whole-brain segregation/integration

* Increasing task demand

e Lower modularity in OA than YA

* Lower modularity with increasing
load

Steeper modularity decrement in
OA than YA?

Changes with training, not simple
task-exposure

Greater modularity with training in
YA than OA?

Low Load High Load
G
F G F M
+ < > P + Q
K B T B
K

®
® 0 ® 0
o} ] .

. ' & © < > .-__p R D
® o} e g Q.O
@ o ®
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Normalized Modularity

1. Whole-Brain Results: Modularity

Increased task-related modularity with training in YA
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Lower overall modularity in OA vs. YA.
Lower modularity with increasing load.
Steeper modularity decrement in OA vs YA.

GroupxTime interaction.
* OA: No task exposure or training effects
* YA: No task exposure but significant training effect,
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1. Whole-Brain Results

Community structure: Network/module composition

Rest Task mode

 Demand and training effects

* Change from rest to task e 8 Y
* Greater reorganization in OA than YA? Te

* Less change with increasing demand Erecutive ntegrative

* Integrative -> Executive meta-system meta-system meta-system

 Effect of training?




1. Whole-Brain Results: Community Structure

Node-module assignments across rest and task loads at Timel

Older Adults Younger Adults

 OA and YA show 5 main modules at rest

» Switching from rest (RS) to task (L1) leads to different configurations

* OA: emergence of salience/sensorimotor module (Sal/SMN)

* YA: relatively less reorganization; GroupxTime ANOVA on Vin, Group: £, ,.=75.89, p<0.001, 1, *=0.68
* Increasing WM load

e OA: Task community structure largely preserved

* YA: emergence of fronto-parietal/salience module (FPN/Sal)



OA, Time,
/L1 L4 L5 L6 L7 LE RS

YA, Time,
/L1 L5 16 L7 L8 LIRS

0.4

0.3

0.2

0.1

Rest-to-task differences in community structure

fL1 141516 L7 LERS

OA, Time,,
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YA, Time
ﬂl L5 L6 L7 L8 L9MRS
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TI”&BTI@mi |
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0.
Tirrh\s.Tlnfb 0
Tirrb\s.T/n}’, 0.
Ti 0.
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0
\ L1 L5 L6 L7 L8 L9 RS

*p<0.05; **p<0.01; ***p<.001

 Community structure is different for rest compared to WM loads

* No (consistent) differences in community structure between loads

* No differences in community structure across time




2. Individual Networks Results

Node-module assignments across loads at Timel
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2. Individual Networks Results

Primary targets: FPN and DMN

 Within-network communication:
Global Efficiency @

* Parallel information transfer,
integrated processing

Low Medium High

* Between-network communication:
Participation Coefficient "o

* Distribution of node connections "{‘YQOO
]

across modules \ | /




YA

2. Individual Networks Results

@ Task-positive Regions (activated by load)
Outcomes:

e Within-network communication:
Global Efficiency

ATraining: Greater increase = more efficient @ @

processing

N Load: Less decrease = better coping with
demand Low Medium

 Between-network communication:
Participation Coefficient

NTraining: Greater decrease = more automatic
processing (less integration required)

/1Load: Less increase = better coping with
demand (less integration required)



Older adults

2. Individual Networks Results

Within net’s

S
e

®

Between net’s

&
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OA: Increased global efficiency within Sal/SMN with training

— o — OA, Time2

—0—O0A, Time3

- -0- -OA, Time,
—o0—O0A, Time,

® DMN ® Sal/SMN
0.32¢
OQ\\’QC\)%—M 031
N\,
or —-olL 0.28}
~9 % %k
0.26
0.24 ¢t o\o_,o—o——‘(’
fol
0.221 SIS =l
o ~0
0.2}
0.18
L4 L5 L6 L7 L8 L4 L5 L6 L7
WM Load WM Load
0.9
= O~ g
0.88 T
0.86
0.84
0.82
0.8
0.78
14 L5 L6 L7 L8 L4 L5 L6 L7 L8
WM Load WM Load

 Training effect on Sal/SMN global efficiency

Load effects on FPN
and DMN participation

and DMN global efficiency



Younger adults
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Individual Networks Results

YA: Increased global efficiency within and lower participation of
FPN/Sal and DMN with training

Within net’s

% %

Between net’s
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Global Efficiency

Participation

® FPN/Sal
0.36 }
0.34}
0.32} +
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0.7
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WM Load

* Training effects on:
* Global efficiency of FPN/Sal
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3. Pairwise Connectivity Results: Training Effects

OA: Diffusely increased between- YA: Increased DMN segregation
network connectivity with training from FPN/Sal and Vis with training

Increased connectivity Decreased connectivity

| i Legend: t-values | B |
3.3 6.5 3.3 6.0




3. Pairwise Connectivity Results: Load Effects

OA: Increased integration of DMN YA: Increased segregation of
with other networks FPN/Sal from sensory networks

Increased connectivity Decreased connectivity Increased connectivity Decreased connectivity
| i | i | __n | __a
3.3 5.7 3.3 5.4 3.3 5.2 3.3 5.7

Legend: t-values



Conclusions

Despite behavioral gains in both age groups, younger and older brains
responded differently to WM training.

Younger adults increase network segregation with training, suggesting more
automated processing with enhanced expertise.

Older adults maintain, and potentially amplify, a more integrated global
workspace, which may enhance capacity for network engagement.

In sum, WM training promotes different trajectories in functional network
reconfiguration for younger and older adults.
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