

Network Analysis

Alex Iordan, Ph.D.

Department of Psychology, University of Michigan <u>adiordan@umich.edu</u>

U-M fMRI Course 2021

From brain regions to brain graphs

Neurosynth – "working memory"

Automated meta-analysis of 901 studies

The Graph-theoretic Approach

- enables characterization of the brain's connectivity structure
- derives measures that assess global and local features that may be important for network function

Network organization of brain areas

What is a graph?

adjacency matrix

- undirected graph -> symmetric matrix
- unweighted graph -> binary matrix
- diagonal is zero

>Any network can be represented as a collection of nodes connected by edges.

image: programiz.com

image: Fornito et al., 2016

images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013

Thresholding and binarizing an adjacency matrix

E.g., functional connectivity connectivity data

Unthresholded

Thresholded

Binarized

$$C_{ij} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1N} \\ C_{21} & C_{22} & & C_{2N} \\ \vdots & & \ddots & \vdots \\ C_{N1} & C_{N2} & \cdots & C_{NN} \end{bmatrix}$$

$$A_{ij} = \begin{cases} C_{ij} & \text{if } C_{ij} > \tau, \\ 0 & \text{otherwise} \end{cases}$$

 $A_{ij} = \begin{cases} 1 & \text{if } C_{ij} > \tau, \\ 0 & \text{otherwise} \end{cases}$

image: Fornito et al., 2016

Visualizing adjacency matrices

E.g., structural connectivity data

Random order

Modular structure

Modules

Anatomical projection

L vs R hemisphere

Intra-hemispheric connectivity

Connectivity of each region with homologue in the other hemisphere

image: Fornito et al., 2016

Common types of visualizations

Modularity – Key topological property

Description (Newman & Girvan, 2004)

- Nodes cluster into highly cohesive modules.
- Degree of intramodule connectivity is greater than expected by chance (i.e., in a random network).

Quantification – *Modularity Index*

$$Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$$

Detection

• community detection algorithms

Example - Air Transportation Network (3,618 nodes; 28,287 edges)

Sales-Pardo et al., 2007

Cognitive modules and global workspace

Modularity of mind (Fodor, 1983)

Functional segregation & integration

High-level cognitive functions (eg. WM) rely more on a *global workspace* than on segregated modular functions.

Modules - spatially localized and include specialized brain areas (visual, auditory, motor ...)

Large-scale functional organization of the brain

Resting state clusters of Yeo et al., 2011

Resting state clusters of Power et al., 2011

Node degree & strength

- Binary undirected network
 - Degree of node i:
 - # of edges connecting node i with all other nodes
 - Mean degree of an undirected network:
 - mean of all node degrees
- Weighted undirected network
 - Strength of node *i*:
 - sum of weights of edges attached to node *i*
 - Positive vs. negative node strength
 - signed weighted networks (e.g., correlation)

$$\begin{aligned} k_i &= \sum_{j \neq i} A_{ij}. \\ \langle k \rangle &= \frac{1}{N} \sum_{i=1}^{N} k_i. \end{aligned} \\ \begin{array}{c} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{E} \\ \mathbf{F} \\ \mathbf{I} \\ \mathbf{I}$$

Node roles: Hubs

Caution: Association between node strength and module size in correlation-based FC

Node roles

- Within-module degree z-score $z_i = \frac{k_i(m_i) \bar{k}(m_i)}{\sigma_{k(m_i)}}$
 - Within-module degree for node *i* (# connections linking node *i* to other nodes in the same module *m*)
 - Mean within-module degree of nodes in the same module as node *i*
 - Divided by standard deviation of k(m) values across all nodes in module m

 $P_i =$

- Participation coefficient
 - How a node's links are distributed across different modules

$$1 - \sum_{m=1}^{M} \left(\frac{k_i(m)}{k_i}\right)^2$$

Topological Roles for Network Nodes

Guimera & Amaral, 2005

R5, provincial hub R6, connector hub R7, kinless hub

R1, ultra-peripheral R2, peripheral R3, nonhub connector R4, nonhub kinless

Node role distinctions in brain imaging

Power et al., 2013

Brain modules and regional node roles

Resting state data, 90 anatomically defined brain regions

Meunier et al., 2009

Variation of participation coefficient across the brain

During resting-state

Across tasks

Experimental evidence: Neuropsychological deficits are more consistent and widespread in patients with lesions to areas with high community participation.

Warren et al., 2014; image: Fornito et al., 2016

Efficiency

- $E_{\text{glob}} = \frac{1}{L'} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{l_{ij}}.$
- Global efficiency
 - Efficiency of information exchange in a parallel system
- Nodal efficiency

$$E_{\text{nodal}}(j) = \frac{1}{N-1} \sum_{i} \frac{1}{l_{ij}}.$$

• Measures node integration within network

$$E_{\rm loc}(i) = \frac{1}{N_{G_i}(N_{G_i}-1)} \sum_{j, h \in G_i} \frac{1}{l_{jh}},$$

- Local efficiency
 - Measures integration between the immediate neighbors of a given node

 Modularity -> network distinctiveness, functional segregation

$$Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$$

• **Global efficiency** -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

 Modularity -> network distinctiveness, functional segregation

$$Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$$

• **Global efficiency** -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

 Modularity -> network distinctiveness vs. dedifferentiation

 $Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$

 Global efficiency -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

 Modularity -> network distinctiveness vs. dedifferentiation

 $Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$

 Global efficiency -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

 Modularity -> network distinctiveness vs. dedifferentiation

$$Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$$

• **Global efficiency** -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

 Local efficiency -> regional integration, fault tolerance

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

Onoda & Yamaguchi, 2015

 Modularity -> network distinctiveness vs. dedifferentiation

$$Q = \frac{1}{2E} \sum_{ij} [A_{ij} - \gamma e_{ij}] \delta(m_i, m_j)$$

• **Global efficiency** -> graph-wide integration, rapid information exchange

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{L_{ij}}$$

 Local efficiency -> regional integration, fault tolerance

$$E_{loc}(i) = \frac{1}{N_{G_i}(N_{G_i} - 1)} \sum_{j,h \in G_i} \frac{1}{L_{jh}}$$

low $E_{loc} \rightarrow$ low cost-efficiency

Onoda & Yamaguchi, 2015

Comparing partitions

- Mutual information: degree to which knowing the community assignment of a node in partition Y reduces uncertainty about that node's community assignment in partition X
 - Normalized mutual information

$$MI'(X, Y) = \frac{2MI(X, Y)}{H(X) + H(Y)}.$$

 Variation of information (metric of partition distance)

$$VI(X, Y) = H(X) + H(Y) - 2MI(X, Y)$$

Methodological issues

images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013

Tools

Artifact Detection Tools (ART)

2	-	1	-				
-							
<u>0</u> -	-	£					2.
1		1					2.5

Toolbox for post-processing fMRI data. Includes software for comprehensive analysis of sources of artifacts in timeseries data including spiking and motion. Most compatible with SPM processing, but adaptable for FSL as well.

CONN : functional connectivity toolbox

CONN is a Matlab-based cross-platform software for the computation, display, and analysis of functional connectivity in fMRI (fcMRI).

CONN includes a rich set of connectivity analyses (seed-based correlations, ROI-to-ROI graph analyses, group ICA, masked ICA, generalized PPI, ALFF, ICC, GCOR, LCOR, etc.) in a simple-to-use and powerful software package

Brain Connectivity Toolbox

The Brain Connectivity Toolbox (brain-connectivity-toolbox.net) is a MATLAB toolbox for complex-network (graph) analysis of structural and functional brain-connectivity data sets. Several people have contributed to the toolbox and users are welcome to contribute new functions with due acknowledgement.

Identifying outlier volumes (ART)

+

Choosing ROI atlas

Tzurio-Mazoyer et al., 2002 Desikan et al., 2006 Dosenbach et al., 2010 Power et al., 2011 Yeo et al., 2011 Craddock et al., 2012

Glasser et al., 2016

Signal vs. Noise

Signal Intensity Mask

Excluding ROIs that lack good coverage.

Physiological noise

WM and CSF Masks

Removing physiological and other sources of noise

- aCompCor (Behzadi et al., 2007) temporal covariates:
 - signal extracted from noise ROIs (white matter, CSF) (PCA)
 - motion parameters (+ derivatives)
 - regressors for outlier volumes ('scrubbing')
- band-pass filtering e.g. [.01 .1]
- detrending
- despiking

Issues re: Thresholding

- Is it necessary to threshold or binarize?
- Comparing partitions between 2 groups:
 - Weight-based/absolute thresholding
 - Measures may be influenced by trivial differences in the number of edges.
 - Density/'cost'-based thresholding
 - Adequate if groups are matched in edge weight-distribution.
 - Otherwise, may be influenced by spurious edges.
- Use stringent thresholds
 - False positives are more detrimental than false negatives!

Community detection

- Algorithms
 - 'Louvain' (Blondel et al., 2008)
 - 'Infomap' (Rosvall & Bergstrom, 2008)
 - ...
- Resolution
- Degeneracy
- Consensus clustering

Louvain

Power et al., 2011
Community detection

- Algorithms
- Resolution
 - Multi-scale community detection
- Degeneracy
- Consensus clustering

Community detection

- Algorithms
- Resolution
- Degeneracy
 - There is no clear maximum modularity
- Consensus clustering

Community detection

- Algorithms
- Resolution
- Degeneracy
- Consensus clustering
 - Building a representative partition

Application

Received: 19 May 2020 Revised: 21 December 2020 Accepted: 22 December 2020

DOI: 10.1002/hbm.25337

RESEARCH ARTICLE

WILEY

Age differences in functional network reconfiguration with working memory training

Alexandru D. Iordan¹ | Kyle D. Moored² | Benjamin Katz³ | Katherine A. Cooke¹ | Martin Buschkuehl⁴ | Susanne M. Jaeggi⁵ | Thad A. Polk¹ | Scott J. Peltier^{6,7} | John Jonides¹ | Patricia A. Reuter-Lorenz¹

Aging influences the functional organization of the brain

Default-mode Network

Salience/Cingulo-Opercular Network

Onoda et al., 2012

Andrews-Hanna et al., 2007

Evidence for network differences between young and older adults

Differences in community structure

Differences in brain-wide network measures

Differences in individual network measures

Geerligs et al., 2015

Modularity decreases with aging

Similar results:

Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; Gallen et al., 2016;

Geerligs et al., 2015; Onoda & Yamaguchi, 2013; Song et al., 2014

lordan et al., 2018

Modularity Predicts Training-related Cognitive Gains

Patients with acquired brain injury

Healthy older adults

Gallen et al., 2016

Cognitive modules and global workspace

• Modularity of mind (Fodor, 1983)

• Functional segregation & integration

High-level cognitive functions (eg. WM) rely more on a *global workspace* than on segregated modular functions.

Modules - spatially localized and include specialized brain areas (visual, auditory, motor ...)

Community structure is influenced by (large shifts in) cognitive demand

Task-related reconfigurations are "relatively small"

Questions

- How does aging affect brain network reconfigurations elicited by demanding cognitive tasks?
- Can these be influenced by cognitive training?

Greater rest-to-task

Lower overall modularity in OA than YA

Modularity increases with training in YA

How does aging affect brain network reconfigurations elicited by demanding cognitive tasks?

- We expect:
 - Overall lower modularity in older compared to younger adults
 - Lower modularity during task performance compared to resting-state
 - Progressively lower modularity with increasing WM load
- Open questions OA vs. YA
 - Greater decrease in modularity when shifting from resting-state to task mode?
 - Steeper decrease in modularity with increasing task load?

What is the influence of cognitive training?

- We expect:
 - network reorganization elicited by *training* not *task-exposure*
 - task-related FC more sensitive to training than resting-state
- Open question:
 - Greater modularity enhancement with training in YA vs. OA?
- Brain networks level:
 - Training reconfigures primarily associative brain networks (FPN and DMN)

<u>Present study</u>: Design

Neuropsychological testing was performed at each time point (Not discussed here).

Participants

MoCA, Montreal Cognitive Assessment

fMRI & Training Tasks: Verbal WM (Sternberg) tasks with varying Load

fMRI (Criterion) Task:

OA: loads 1 (task mode), 4-8

YA: loads 1 (task mode), 5-9

Set-size was randomized (6 blocks of 24 trials)

fMRI & Training Tasks: Verbal WM (Sternberg) tasks with varying Load

fMRI (Criterion) Task:

OA: loads 1 (Baseline), 4-8

YA: loads 1 (Baseline), 5-9

Set-size was randomized (6 blocks of 24 trials)

Adaptive Training Task:

Initial set size = 3 letters

 Set-size was blocked: increased if accuracy >86%, decreased if <72% (6 blocks of 14 trials/sess)

Adaptive Training Task Results

Both groups improved in WM performance across the course of training, $F_{9,378}$ =103.9, p<.001, η_p^2 =.712

YA improved more than OA, $F_{1,378}$ =15.7, p<.001, η_p^2 =.40

images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013; Sreenivasan & D'Esposito, 2019

3 levels of analysis

- Whole brain
 - Segregation/integration
- Individual networks
 - Within-network communication
 - Between-network communication
- Network components (sub-network)
 - Pairwise relations between brain regions

1. Whole-Brain Results

Modularity: Whole-brain segregation/integration

Rest-to-task shift

- Lower modularity in OA than YA
- Lower modularity during task than during rest
- Greater modularity decrement with rest-to-task shift in OA than YA?
- Minimal effect of training

1. Whole-Brain Results: Modularity

Lower modularity and greater decrement with rest-to-task shift in OA

- Lower overall modularity in OA vs. YA. Group: $F_{1,36}$ =31.99, p<0.001, η_p^2 =0.47
- Lower modularity during task than rest. Mode: $F_{1,36}$ =141.51, p<0.001, η_p^2 =0.8
- Greater modularity decrement with rest-to-task shift in OA. Group×Mode: $F_{1,36}$ =19.14, p<0.001, η_p^2 =0.35

1. Whole-Brain Results

Modularity: Whole-brain segregation/integration

Increasing task demand

- Lower modularity in OA than YA
- Lower modularity with increasing load
- Steeper modularity decrement in OA than YA?
- Changes with *training*, not simple *task-exposure*
- Greater modularity with training in YA than OA?

1. Whole-Brain Results: Modularity

Increased task-related modularity with training in YA

- Lower overall modularity in OA vs. YA. Group: $F_{1,36}$ =37.38, p<0.001, η_p^2 =0.51
- Lower modularity with increasing load. Load: $F_{3,108}=5.89$, p=0.001, $\eta_p^2=0.14$, linear trend p<0.001;
- Steeper modularity decrement in OA vs YA. Group×Load: $F_{3,108}=3.21$, p=0.026, $\eta_p^2=0.08$
- Group×Time interaction. $F_{2,72}$ =4.64, p=0.013, η_p^2 =0.11
 - OA: No task exposure or training effects
 - YA: No *task exposure* but significant *training* effect, Time: $F_{1,19}=25.88$, p<0.001, $\eta_p^2=0.58$

1. Whole-Brain Results

Community structure: Network/module composition

- Demand and training effects
 - Change from rest to task
 - Greater reorganization in OA than YA?
 - Less change with increasing demand
 - Integrative -> Executive meta-system
 - Effect of training?

Images: Hearne et al., 2017; Cocchi et al., 2013

1. Whole-Brain Results: Community Structure

Node-module assignments across rest and task loads at Time1

- OA and YA show 5 main modules at rest
- Switching from rest (RS) to task (L1) leads to different configurations
 - OA: emergence of *salience/sensorimotor module* (Sal/SMN)
 - YA: relatively less reorganization; Group×Time ANOVA on VIn, Group: $F_{1,36}$ =75.89, p<0.001, η_p^2 =0.68
- Increasing WM load
 - OA: Task community structure largely preserved
 - YA: emergence of *fronto-parietal/salience module* (FPN/Sal)

Rest-to-task differences in community structure

- Community structure is different for rest compared to WM loads
- No (consistent) differences in community structure between loads
- No differences in community structure across time

Node-module assignments across loads at Time1

Older Adults

Younger Adults

Primary targets: FPN and DMN

- Within-network communication: **Global Efficiency**
 - Parallel information transfer, integrated processing
- Task-positive Regions (activated by load) Task-negative Regions (deactivated by load)

OA

- Between-network communication: **Participation Coefficient**
 - Distribution of node connections across modules

YA

Outcomes:

• Within-network communication: Global Efficiency

- Training: Greater increase = more efficient processing
- Load: Less decrease = better coping with demand

 Between-network communication: Participation Coefficient

Training: Greater decrease = more automatic processing (less integration required)
Load: Less increase = better coping with demand (less integration required)

OA: Increased global efficiency within Sal/SMN with training

and DMN participation (p<0.001).

2. Individual Networks Results YA: Increased global efficiency within and lower participation of FPN/Sal and DMN with training

- Training effects on:
 - Global efficiency of FPN/Sal (p=0.076) and DMN (p=0.003).
 - Participation of FPN/Sal (p=0.012) and DMN (p<0.001).
3. Pairwise Connectivity Results: Training Effects

OA: Diffusely increased betweennetwork connectivity with training YA: Increased DMN segregation from FPN/Sal and Vis with training

Decreased of	connectivity
3.3	6.0

3. Pairwise Connectivity Results: Load Effects

OA: Increased integration of DMN with other networks

YA: Increased segregation of FPN/Sal from sensory networks

Legend: t-values

Conclusions

- Despite behavioral gains in both age groups, younger and older brains responded differently to WM training.
- Younger adults increase network segregation with training, suggesting more automated processing with enhanced expertise.
- Older adults maintain, and potentially amplify, a more integrated global workspace, which may enhance capacity for network engagement.
- In sum, WM training promotes different trajectories in functional network reconfiguration for younger and older adults.

https://sites.google.com/site/bctnet/Home

