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From brain regions to brain graphs

The Graph-theoretic    
Approach

• enables characterization of 
the brain’s connectivity 
structure

• derives measures that 
assess global and local
features that may be 
important for network 
function

Image: Wig, 2017

Network organization of brain areasNeurosynth – “working memory”
Automated meta-analysis of 901 studies



What is a graph?

Any network can be represented as a collection of nodes connected by edges.

edgenode
adjacency matrix

image: programiz.com

• undirected graph –> symmetric matrix
• unweighted graph –> binary matrix
• diagonal is zero
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image: Fornito et al., 2016



images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013
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Thresholding and binarizing an adjacency matrix

Unthresholded Thresholded Binarized

E.g., functional connectivity connectivity data

image: Fornito et al., 2016



Visualizing adjacency matrices
Random order L vs R hemisphere

Intra-hemispheric connectivity

Connectivity of each region with 
homologue in the other 
hemisphere

Modular structure

ModulesAnatomical projection

E.g., structural connectivity data

image: Fornito et al., 2016



Anatomical projection Force-directed projection
Circular projection/

connectogram

Common types of visualizations

SM
N

3.3

5.7

Fronto-parietal
Cingulo-opercular
Default-mode
Visual
Sensorimotor



Modularity – Key topological property
Description (Newman & Girvan, 2004)

• Nodes cluster into highly cohesive 
modules.

• Degree of intramodule connectivity is 
greater than expected by chance 
(i.e., in a random network).

image: Muller-Linow et al., 2008

Quantification – Modularity Index

Detection
• community detection algorithms
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Example - Air Transportation Network 
(3,618 nodes; 28,287 edges)

Sales-Pardo et al., 2007



Cognitive modules and global workspace

Modularity of mind (Fodor, 1983)

Functional segregation & integration

Dehaene et al., 1998

High-level cognitive functions (eg. WM) -
rely more on a global workspace than 
on segregated modular functions.

Modules - spatially localized and 
include specialized brain areas 
(visual, auditory, motor ...)



Power et al., 2014

Large-scale functional organization of the brain



Node degree & strength

• Binary undirected network
• Degree of node i:

• # of edges connecting node i with all other nodes
• Mean degree of an undirected network:

• mean of all node degrees

• Weighted undirected network
• Strength of node i:

• sum of weights of edges attached to node i
• Positive vs. negative node strength

• signed weighted networks (e.g., correlation)

Fornito et al., 2016



Node roles: Hubs
Caution: Association between node strength and module size in correlation-based FC

Module size
(# voxels) Node strength

Module size
(# voxels)
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Node roles

• Within-module degree z-score
• Difference between

• Within-module degree for node i (# connections linking node i to other nodes in the 
same module m)

• Mean within-module degree of nodes in the same module as node i
• Divided by standard deviation of k(m) values across all nodes in module m

• Participation coefficient
• How a node’s links are distributed 

across different modules



R1, ultra-peripheral
R2, peripheral
R3, nonhub connector
R4, nonhub kinless

Guimera & Amaral,  2005

Topological Roles for Network Nodes R5, provincial hub
R6, connector hub
R7, kinless hub 

Power et al., 2013

Node role distinctions 
in brain imaging



Brain modules and regional node roles
Resting state data, 90 anatomically defined brain regions

Meunier et al., 2009



During resting-state Across tasks

Variation of participation coefficient across the brain

Cole et al., 2013Power et al., 2013



Warren et al., 2014; image: Fornito et al., 2016

Experimental evidence: Neuropsychological deficits are more consistent and 
widespread in patients with lesions to areas with high community participation.



Efficiency

• Global efficiency
• Efficiency of information exchange in a parallel system

• Nodal efficiency
• Measures node integration within network

• Local efficiency
• Measures integration between the immediate neighbors 

of a given node

image: Farahani et al., 2019



Network measures interpretation
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low Eglob low capacity for 
information exchange
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Comparing partitions
• Mutual information: degree to which knowing the community 

assignment of a node in partition Y reduces uncertainty about that 
node’s community assignment in partition X

• Normalized mutual information

• Variation of information
(metric of partition distance)

Iordan et al., 2018



Methodological issues



images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013
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Tools



Identifying outlier volumes (ART)

for ‘scrubbing’



Choosing ROI atlas

Anatomical Functional
Meta-analytical Data-driven

Multi-modal

Tzurio-Mazoyer et al., 2002
Desikan et al., 2006

Dosenbach et al., 2010
Power et al., 2011

Yeo et al., 2011
Craddock et al., 2012 Glasser et al., 2016

images: biomedia.doc.ic.ac.uk; Power et al., (2013)



Signal vs. Noise

Signal Intensity Mask

Excluding ROIs that lack good coverage.

WM and CSF Masks

Physiological noise



Removing physiological and other sources of noise

• aCompCor (Behzadi et al., 2007) temporal covariates:
• signal extracted from noise ROIs (white matter, CSF) (PCA)
• motion parameters (+ derivatives)
• regressors for outlier volumes (‘scrubbing’)

• band-pass filtering – e.g. [.01 .1]

• detrending

• despiking



Issues re: Thresholding
• Is it necessary to threshold or binarize?
• Comparing partitions between 2 groups:

• Weight-based/absolute thresholding
• Measures may be influenced by trivial differences in the 

number of edges.
• Density/’cost’-based thresholding

• Adequate if groups are matched in edge weight-distribution.
• Otherwise, may be influenced by spurious edges.

• Use stringent thresholds
• False positives are more detrimental than false 

negatives!

Zalesky, OHBM, 2017; Zalesky et al., 2016; image: Taya et al., 2016 



Community detection

• Algorithms
• ‘Louvain’ (Blondel et al., 2008)
• ‘Infomap’ (Rosvall & Bergstrom, 

2008)
• …

• Resolution

• Degeneracy

• Consensus clustering

Infomap Louvain

Power et al., 2011



Community detection

• Algorithms

• Resolution
• Multi-scale community 

detection

• Degeneracy

• Consensus clustering

Betzel & Bassett, 2016



Community detection

• Algorithms

• Resolution

• Degeneracy
• There is no clear maximum 

modularity

• Consensus clustering

Good et al. 2010



Community detection

• Algorithms

• Resolution

• Degeneracy

• Consensus clustering
• Building a representative 

partition

Lancichinetti & Fortunato, 2012



Application



Aging influences the functional 
organization of the brain

Andrews-Hanna et al., 2007

Default-mode Network

Onoda et al., 2012

Salience/Cingulo-Opercular Network



Evidence for network differences between 
young and older adults

Geerligs et al., 2015

Differences in brain-wide network measures

Young
adults

Older
adults

Differences in community structure

Differences in individual network measures



Modularity decreases with aging

Iordan et al., 2018

Similar results: 
Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; Gallen et al., 2016;
Geerligs et al., 2015; Onoda & Yamaguchi, 2013; Song et al., 2014



Modularity Predicts Training-related Cognitive Gains

Arneman et al., 2015 Gallen et al., 2016 Iordan et al., 2018

Healthy older adultsPatients with 
acquired brain injury

Baseline modularity Baseline modularity

OA: rho = .51, p = .028

Baseline modularity



Cognitive modules and global workspace

• Modularity of mind (Fodor, 1983)

• Functional segregation & integration

Dehaene et al., 1998

High-level cognitive functions (eg. WM) -
rely more on a global workspace than 
on segregated modular functions.

Modules - spatially localized and 
include specialized brain areas 
(visual, auditory, motor ...)



Modularity decreases with 
increasing cognitive demand

Cohen & D’Esposito, 2016 Finc et al., 2020



Community structure is influenced by 
(large shifts in) cognitive demand

Vatansever et al., 2015 Hearne et al., 2016



Task-related reconfigurations are “relatively small”

Cole et al., 2014



Questions

• How does aging affect brain network reconfigurations elicited by 
demanding cognitive tasks?

• Can these be influenced by cognitive training?



Greater rest-to-task 
reconfiguration in OA than YA

Gallen et al., 2016

Lower overall modularity 
in OA than YA



Modularity increases with training in YA

Finc et al., 2020

Training stage Training stage



How does aging affect brain network reconfigurations 
elicited by demanding cognitive tasks?

• We expect:
• Overall lower modularity in older compared to younger adults
• Lower modularity during task performance compared to resting-state
• Progressively lower modularity with increasing WM load

• Open questions OA vs. YA
• Greater decrease in modularity when shifting from resting-state to task 

mode?
• Steeper decrease in modularity with increasing task load?



What is the influence of cognitive training?

• We expect:
• network reorganization elicited by training not task-exposure
• task-related FC more sensitive to training than resting-state

• Open question:
• Greater modularity enhancement with training in YA vs. OA?

• Brain networks level:
• Training reconfigures primarily associative brain networks (FPN and DMN)



Present study: Design

Neuropsychological testing was performed at each time point (Not discussed here).

fMRI

2 weeks

No Intervention 10-days Training

fMRI

2 weeks

fMRI

Training EffectsExposure Effects

Time 1 Time 2 Time 3



Participants

Power analysis: 20 OA and 20 YA, 94% power 
(two-tailed α=.05; ΔMR signal ≥.015), based on 
Cappell et al., 2010

Initial sample:
23 OA, 23 YA

Not performing fMRI task: 1 YA (>50% NRs)
Tech errors task: 1 YA (fMRI), 1 OA (Training)
Attrition: 1 OA

Behavioral analyses:
21 OA, 21 YA

Tech issues fMRI: 3 OA, 1 YA

fMRI analyses:
18 OA, 20 YA

***p<.001

MoCA, Montreal Cognitive Assessment

OA (N = 21) YA (N = 21)

% Female 48 57

Age (S.D.) 67.81 (3.31) 21.33 (2.65)

Edu (S.D.)*** 17.05 (1.63) 14.81 (1.75)

MoCA (S.D.) 28.24 (1.61) 28.48 (1.50)



fMRI & Training Tasks:
Verbal WM (Sternberg) tasks with varying Load

OA: loads 1 (task mode), 4-8
YA: loads 1 (task mode), 5-9

Set-size was randomized
(6 blocks of 24 trials)
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fMRI (Criterion) Task:
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B
Encoding

Maintenance

Recognition

3s

2s

325 ms
× set-size

1s

fMRI & Training Tasks:
Verbal WM (Sternberg) tasks with varying Load

OA: loads 1 (Baseline), 4-8
YA: loads 1 (Baseline), 5-9

Set-size was randomized
(6 blocks of 24 trials)

fMRI (Criterion) Task:

Initial set size = 3 letters
Set-size was blocked: 

increased if accuracy >86%, 
decreased if <72%
(6 blocks of 14 trials/sess)

Adaptive Training Task:



Adaptive Training Task Results

Both groups improved in WM performance across the course of training, 
F9,378=103.9, p<.001, ηp

2=.712

YA improved more than OA, F1,378=15.7, p<.001, ηp
2 =.40
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images: Uehara et al., 2013; Taya et al., 2016; Power et al., 2013; Sreenivasan & D’Esposito, 2019
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Power et al., 2011

Thresholding 
10-30%, weighted
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3 levels of analysis

• Whole brain
• Segregation/integration

• Individual networks
• Within-network communication
• Between-network communication

• Network components (sub-network)
• Pairwise relations between brain regions

Images: Power et al., 2013; Wig, 2017



1. Whole-Brain Results

• Rest-to-task shift
• Lower modularity in OA than YA

• Lower modularity during task than 
during rest

• Greater modularity decrement with 
rest-to-task shift in OA than YA?

• Minimal effect of training

+

+

+

+

b

B
Encoding

Maintenance

Recognition

7s

2s

4s

1s

Resting State Task Mode (Load of 1)

Higher modularity Lower modularity

Modularity: Whole-brain segregation/integration



1. Whole-Brain Results: Modularity

• Lower overall modularity in OA vs. YA. Group: F1,36=31.99, p<0.001, ηp
2=0.47

• Lower modularity during task than rest. Mode: F1,36=141.51, p<0.001, ηp
2=0.8

• Greater modularity decrement with rest-to-task shift in OA. Group×Mode: F1,36=19.14, p<0.001, ηp
2=0.35

Lower modularity and greater decrement with rest-to-task shift in OA



1. Whole-Brain Results

• Increasing task demand
• Lower modularity in OA than YA

• Lower modularity with increasing 
load

• Steeper modularity decrement in 
OA than YA?

• Changes with training, not simple 
task-exposure

• Greater modularity with training in 
YA than OA?

Higher modularity Lower modularity

Low Load

+
MF

G

T
K

B
+

F G

K B

High Load

P Q

…

Modularity: Whole-brain segregation/integration



1. Whole-Brain Results: Modularity
Increased task-related modularity with training in YA

• Lower overall modularity in OA vs. YA. Group: F1,36=37.38, p<0.001, ηp
2=0.51

• Lower modularity with increasing load. Load: F3,108=5.89, p=0.001, ηp
2=0.14, linear trend p<0.001; 

• Steeper modularity decrement in OA vs YA. Group×Load: F3,108=3.21, p=0.026, ηp
2=0.08

• Group×Time interaction. F2,72=4.64, p=0.013, ηp
2=0.11

• OA: No task exposure or training effects
• YA: No task exposure but significant training effect, Time: F1,19=25.88, p<0.001, ηp

2=0.58



1. Whole-Brain Results

• Demand and training effects
• Change from rest to task

• Greater reorganization in OA than YA?

• Less change with increasing demand
• Integrative -> Executive meta-system

• Effect of training?

Rest Task mode
Increased task

demands

Images: Hearne et al., 2017; Cocchi et al., 2013

Community structure: Network/module composition

Executive
meta-system

Integrative 
meta-system



Older Adults Younger Adults

RS        L1       L4        L5       L6        L7       L8 RS        L1       L5        L6       L7        L8        L9

DMN

FPN

Sal

SMN

Vis

DMN

FPN

Sal

SMN

Vis

DMN

FPN

Sal/SMN

SMN

Vis

DMN

FPN/Sal

SMN

Vis

1. Whole-Brain Results: Community Structure
Node-module assignments across rest and task loads at Time1

• OA and YA show 5 main modules at rest
• Switching from rest (RS) to task (L1) leads to different configurations

• OA: emergence of salience/sensorimotor module (Sal/SMN)
• YA: relatively less reorganization; Group×Time ANOVA on VIn, Group: F1,36=75.89, p<0.001, ηp

2=0.68
• Increasing WM load

• OA: Task community structure largely preserved
• YA: emergence of fronto-parietal/salience module (FPN/Sal)
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• Community structure is different for rest compared to WM loads
• No (consistent) differences in community structure between loads
• No differences in community structure across time

*p<0.05; **p<0.01; ***p<.001
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Rest-to-task differences in community structure
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2. Individual Networks Results
Node-module assignments across loads at Time1



2. Individual Networks Results

• Within-network communication: 
Global Efficiency

• Parallel information transfer, 
integrated processing

• Between-network communication:
Participation Coefficient

• Distribution of node connections 
across modules

Low Medium High

Task-positive Regions (activated by load) Task-negative Regions (deactivated by load)

YAOA

Primary targets: FPN and DMN



2. Individual Networks Results

• Within-network communication: 
Global Efficiency

↗Training: Greater increase = more efficient 
processing

↘Load: Less decrease = better coping with 
demand

• Between-network communication:
Participation Coefficient

↘Training: Greater decrease = more automatic 
processing (less integration required)

↗Load: Less increase = better coping with 
demand (less integration required)

Low Medium High

Task-positive Regions (activated by load) Task-negative Regions (deactivated by load)

YAOA

Outcomes:
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2. Individual Networks Results
OA: Increased global efficiency within Sal/SMN with training

Within net’s
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Between net’s

Older adults **

• Training effect on Sal/SMN global efficiency (p=0.008)

• Load effects on FPN (p=0.01) and DMN global efficiency (p=0.029), 
and DMN participation (p<0.001).
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2. Individual Networks Results
YA: Increased global efficiency within and lower participation of 

FPN/Sal and DMN with training

Within net’s

Younger adults

• Training effects on:
• Global efficiency of FPN/Sal (p=0.076) and DMN (p=0.003).
• Participation of FPN/Sal (p=0.012) and DMN (p<0.001).
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3. Pairwise Connectivity Results: Training Effects
OA: Diffusely increased between-
network connectivity with training

YA: Increased DMN segregation
from FPN/Sal and Vis with training

SM
N

3.3                         6.5 3.3                         6.0
Legend: t-values

Increased connectivity Decreased connectivity



3. Pairwise Connectivity Results: Load Effects
OA: Increased integration of DMN

with other networks
YA: Increased segregation of

FPN/Sal from sensory networks

3.3                         5.7 3.3                         5.4
Legend: t-values

Increased connectivity Decreased connectivity
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N
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3.3                         5.2 3.3                         5.7

Increased connectivity Decreased connectivity



Conclusions

 Despite behavioral gains in both age groups, younger and older brains 
responded differently to WM training.

 Younger adults increase network segregation with training, suggesting more 
automated processing with enhanced expertise.

 Older adults maintain, and potentially amplify, a more integrated global 
workspace, which may enhance capacity for network engagement. 

 In sum, WM training promotes different trajectories in functional network 
reconfiguration for younger and older adults. 



https://sites.google.com/site/bctnet/Home
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