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FC between regions varies depending on
context

Resting-state/intrinsic FC




FC between regions varies depending on
context

Task-evoked FC
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Common task FC approaches (exploratory)

e standard psychophysiological interaction (sPPI)

e generalized psychophysiological interaction (gPPI)
 correlational psychophysiological interaction (cPPI)
* beta-series correlation

* background/task-residual connectivity

Connectivity




Standard PPI (sPPI)

2. BOLD data from region A
(seed) deconvolved into
est. of neural events

3. PPl term = mean-centered
est. of neural events x
contrast vector
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4. PPl term
convolved with
canonical HRF
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5. BOLD data from region B regressed on:

1) BOLD data from region A (main effect of region A)
2) convolved task predictor (main effect of task)

3) PPl term (interaction between task and region A)

Friston et al., 1997; Gitelman et al., 2003; Cisler et al., 2014



PPI: Design matrix

Interaction (V1 x P)
Main effect (V1)
Main effect (P)
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Inference -> interaction term
Contrast vector [1 0 0 O]

Two alternative interpretations of PPI effects
(do not make causal claims)
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Context specific modulation
of stimulus reponses

Contribution of one area (k) to
another (i) is altered by the
experimental (psychological)
context
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Contribution dependent
changeinresponses to
an experimental context

The response of an area (i) to an
experimental (psychological)
context due to the contribution of
region (k)



PPl In practice

* Mechanistically, a PPl analysis involves the following steps:

1. Performing a standard GLM analysis.

2. Extracting BOLD signal from a source region identified in the GLM analysis.
3. Forming the interaction term (source signal x experimental treatment)
4,

Performing a second GLM analysis that includes
* theinteraction term

* the source region’s extracted signal analogous to including the main effects in ANOVA
* the experimental vector in the design to make an inference on the interaction

* Practical example for sPPI — SPM12 manual, p. 329. "
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Pros and Cons of sPPI

* Pros
* Model-based with an approximated neuronal input structure

* Implemented in SPM

 Cons
* New model for each seed

* New model for each psychological contrast

e Optimized for simple (e.g., 2-condition) designs, but may not be suitable for
more complex designs (but see gPPI next)

* Rudimentary “effective connectivity”, but still not much more than a simple
correlation



PPI terms: Each column of the design
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5. BOLD data from region B regressed on: o
1) BOLD data from region A (main effect of region A)
2) convolved task predictors (main effect of task)

3) each convolved PPI term (task condition x neural est.) McLaren et al., 2012: Cisler et al., 2014
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gPPl: Design matrix
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Generalized PPI Toolbox
https://www.nitrc.org/projects/gppi/

gPPI Lab Topic — afternoon

gPPI with CONN:
https://andysbrainbook.readthedocs.io/en/latest/FunctionalConnectivity/CONN_ShortCourse/CONN_11 Task_gPPIl.html

JOVE video of gPPI analysis (Harrison et al., 2017):
https://www-jove-com.proxy.lib.umich.edu/v/55394/generalized-psychophysiological-interaction-ppi-analysis-memory



sPPI
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* PPl model is inherently directional

* rudimentary “effective” connectivity: we assume activity in region A predicts
activity in region B

* How about cases when this assumption cannot be made?

* We can use partial correlations to provide an undirected measure of
inter-regional covariations in task-related activity modulations

Fornito et al., 2012



sPPI
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Procedure: for any two regions A and B:

extract BOLD time series X, and X,

compute the PPl interactions X, ., and X. . (i.e., deconvolve each time
series and multiply with task regressor like in standard PPI)

* convolve X ., and X, ., with HRF, such that |, =X, .,- HRF and I; = X, ., - HRF

* compute partial correlation 1y, 1..[x s X5 X001 G]

* i.e., correlation between the two PPl terms |, and I; while partialling covariance with
the raw activity of the two regions X, and X, the task regressor X.,,, and any other
potential confounds represented by G (e.g., motion).

Fornito et al., 2012



Correlational PPI

* Advantages over PPI:

 avoids arbitrary directional
assumptions

e can be scaled to study pairwise
functional interactions between
many regions

* Note: as in standard PPI analysis,
it works best when the task
regressor defines a contrast
between conditions
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cPPI Toolbox for fMRI

https://www.nitrc.org/projects/cppi_toolbox/
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Beta Series Method
LS-separate

1. Create separate
regressor for each trial of
each condition and
convolve with HRF.

Condition 1/

2. Make trial-specific design matrix
with 2 regressors: 1) trial of interest; 2)
all other trials simultaneously. Estimate

Region A

Region B
'VA ._ o _ :

task activity unique to each trial.

e
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3. Separately for each condition, correlate I Contrast Betas

the series of B values for regions A and B _
B?,l...N,B B ﬁ!,int(B?,}...N,A)

Condition 2\

Rissman et al., 2004; Mumford et al., 2012; Cisler et al., 2014
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Beta-series estimation

Least Squares — All (LS-A)
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Single model:
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Doesn’t work very well in the
presence of collinearity.

Least Squares — Separate (LS-S)
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Trial 1 Trial N

Runs a separate GLM for each trial:

the trial is modeled as the regressor of interest,
and all other trials are combined into a nuisance
regressor.

Mumford et al., 2012
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(8 trials) Gottlich et al., 2015



Correlate ROls

Extract ROl beta-series

Select condition(s)

Inspect beta-series

Correlation matrix

Product-moment correlation

3 350
=
@
z
e 300
&=
250
200
150
100
50
0
-05 0 05 1 15
Fisher z-transformed correlation coefficients

Correlate seed-ROI with voxels
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Condition(s)
Compute correlation map ‘ 1 Mask ‘
Level 2 analysis ‘ paired t-test -
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Gottlich et al., 2015



Pros and Cons of beta-series correlations

* Pros

* Allows flexible modeling
* Good for multi-event per trial designs
* Tease apart sub-parts of psychological processes

» After 15t level GLM is estimated, can repeat correlations on any number of seeds and
conditions

» Relatively more powerful for event-related designs
* Retains power under conditions of HRF variability

e Cons

* No directionality of inference (if you care)

* Individual beta estimates are noisy (but LS-S better than LS-A)
* Massive data output

* Relatively less powerful for block designs (gPPl performs better)



PPl vs. beta-series correlation

e Fundamental difference

* PPl measures a change in regression slope or parameter of a model of
“effective connectivity” as a function of condition

* Does more activation in region X predict more activation in region Y in condition A
compared to condition B?

* Beta-series correlation is “model-free” and measures changes correlation as a
function of condition

* Are regions X and Y more tightly coupled in condition A compared to condition B?

* Both methods measure phasic (stimulus-driven) responses. How
about more tonic (intrinsic) states? (What is “true” FC?)

Cisler et al., 2014; Di et al., 2021



Task-evoked activations and task-state FC

inferences
Moment-to-moment Event-to-event
(induced) variance (evoked) variance
Region 1 Region 2 Region1 Region 2
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Cole et al., 2019
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Background/task-residual connectivity = endogenous or “residual” FC between brain
regions after accounting for variance related to evoked task activity

No neural interaction

Moment-to-moment Event-to-event Observed After subtraction No neural interaction
(induced) variance (evoked) variance signal of event-averaged signal Observed correlation: 0.3
Region 1 Region 2 Region 1 Region 2 Region 1 Region 2 Region 1  Region 2 Inference: “Likely interacting or active during task”
Event1 W™ /\/— ﬂ n J\l\_ ,.f‘(\, \N‘(\ M Post-task-regression correlation: 0.0
_ Inference: “Unlikely to be interacting during task”
!l : . + : — : : 0.0
' EventN  fw 4\{“ f\, M‘/
1

'\ Average —~—~ = ~—— f\ f\ ﬂ f\

A Time series 0.3

. <>
correlation (FC) (=00 r=0.4 r=0.3 r=0.0 .
Task timing
True neural interaction Induced + evoked covariance
Moment-to-moment Event-to-event Observed After subtraction True neural interaction
(induced) variance (evoked) variance signal of event-averaged signal Observed correlation: 0.6
Region 1  Region 2 Region 1  Region 2 Region 1  Region 2 Region 1  Region 2 Inference: “Likely interacting or active during task”

Post-task-regression correlation: 0.3
Inference: “Likely interacting during task”
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Cole et al., 2019
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Denoising settings

Linear regression of confounding effects:
First-level covariates / timeseries

Confounds

Covariates Subjects Sessions Covariate name

Subject 1 i Effect of Memol

Efféct 6f Méfﬁoi
ffect of Memo

F
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Confound timeseries Confound dimensions




Note: Removing mean evoked responses doesn’t remove all time-locked
signals, but only those that are consistent in amplitude with the mean
across task events.

True neural interaction Evoked covariance only

Moment-to-moment Event-to-event Observed After subtraction
(induced) variance (evoked) variance signal of event-averaged signal
Region 1 Region 2 Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

Event 1 -~ T f\, ﬂ f\. ﬂ
i : + : — '

NN
,IEventN.n_... " ﬂfL_f\fL
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* Time series <> <> <>
correlation (FC) (=g r=0.8 r=0.8 r=0.3

Cole et al., 2019



Alternatives:

FIR modeling Constrained basis set

Denoising settings

. . . . Linear regression of confounding effects:
First-level covariates / timeseries

Confounds
Covariates Subjects Sessions Covariate name

Subject 1 Session 1

RAAAAR AL AR ARAR L AR AR DAL
SO A A I A I A A A A A AN Confound timeseries Confound dimensions

500 O 0 W
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However, keep an eye on the estimated remaining DoF! =
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