fMRI Course, Day 5
15t-Level Analysis

August 5th 2022



About Me

Neuroimaging Initiative (NIl)

Consulting for anyone who does neuroimaging
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Goals

1. Understand how to do the steps

2. Understand why we did the steps
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Problem

How to accommodate dozens of labs
spread across three campuses?

How to stay current with the
latest methods and tools?



Solutions

lllustrations and demonstrations using data

Goal is for you to analyze your own data

Feedback is highly appreciated!



About Me

A Andy's Brain Book
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Welcome to Andy'’s Brain Book!

Overview

What is Unix?

Unix Tutorial #1: Navigating the
directory tree

Unix Tutorial #2: Copying and Removing
Files

Unix Tutorial #3: Reading Text Files

Unix Tutorial #4: Shells and Path
Variables

Unix Tutorial #5: For-Loops

Unix Tutorial #6: Conditional
Statements

Unix Tutorial #7: Scripting
Unix Tutorial #8: The Sed Command

Unix Tutorial #9: Automating The UNIVERSITY OF
Analysis MICHIGAN

This resource is sponsored by the University of Michigan.
Introduction

fMRI Tutorial #1: Downloading the Data




Overview of The Schedule

Friday 8:3_0 AM — Level Analysis & Andy Jahn
8/5/2022 12:30 PM Experimental Design University of Michigan

Monday 8:30 AM — Contrasts, Group Analysis & Andy Jahn
8/8/2022 12:30 PM Double Dissociations University of Michigan

4:00 PM Pattern Analysis & Classification Stephen LaConte
via MVPA-virtual but live Virginia Tech
. - Andy Jahn
Tuesda 8:30 AM : : , , .
8/9/20232/ 12:30 PM Pitfalls in fMRI Research University of Michigan

Scott Peltier

Network Analysis & Tools University of Michigan
Alex lordan

University of Michigan

Wednesday 8:30 AM —
8/10/2022 12:30 PM

Andy Jahn
Thursday 8:30 AM — Part 1- y

8/11/2022 12:30 PM Introduction to Open Science University of Michigan

Part 2- Scott Peltier
BIDS, MRIQC & fMRI Prep University of Michigan
Friday 8:30 AM — Reproducibility Andy Jahn
8/12/2022 12:30 PM University of Michigan




Overview of The Schedule

At regular intervals, | will be asking you to download software
and data

This is just to help with the demonstrations; don’t
worry if you are unable to download or install these!



Today’s Agenda

1. Brief review of fMRI

2. The BOLD Response

3. Model Fitting and 15t-Level Analysis

4. Other Modeling Options: Parametric Modulation
and Finite Impulse Response



Review of fMRI

Neuroimaging Scene: The Early 1990’s




Review of fMRI

MRIs: More powerful & More widespread

Oxygenated blood = Higher signal

Blood Oxygenation Level Dependent Signal (BOLD Signal)



Review of fMRI

Photic Stimulation - GE Images

Signal Intensity

120
Seconds

Kwong et al., 1992




Review of fMRI



The BOLD Response

. L & 4. 60 6 7 R 810

Bob Cox, AFNI



The BOLD Response: Duration

Bob Cox, AFNI



The BOLD Response: Convolution

. L & 4, 4 & 7 B %I

Bob Cox, AFNI



Applet Demonstration of Convolution

https://phiresky.github.io/convolution-demo/



Interim Summary

1. Stimulus transducted into neural firing

2. More neural firing = more oxygen consumption
3. More oxygen consumption = more blood flow

4. More blood flow = greater measured signal



What We’ve Done So Far...
1. Overview of fMRI
2. Preprocessing the individual subject
3. Experimental Designs

4. Timing Files

5. Creating the general linear model (GLM)



Behavioral vs. fMRI Experiments

Flanker task: Behavioral task adapted for fMRI analysis

* Dependent measure of * Two dependent measures:
interest is reaction time reaction time & the BOLD
* Can have the same amount of response
time between trials * Will need differing amounts of

time between trials
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Experimental Designs

Linearity
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Experimental Designs

1. Block design (e.g., Kwong et al., 1992)

Photic Stimulation - GE Images
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Advantages: Powerful, easy to design



Experimental Designs

2. Event-related designs

Advantages: More engaging, can use more complex designs



Experimental Designs
Mixed Designs
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Experimental Designs

Experimental trials

and + green?
F “are both
| objects green?”
(‘J.l.l.
relational
abstraction
m 3-5s ITI

high

AN
A

temporal
abstraction

B

Relation-Response Contingencies

Control trial
(assuming “green?”)

N
]k)-r

relational
m n : . -

Os
and “yes" “no”" “no" “no” p(yes)=0.25
any “yes” ‘“yes" “yes” "no” p(yes)=0.75
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temporal
abstraction

Nee et al.,

2013



Behavioral vs. fMRI Experiments

Differing amounts of time between trials (i.e., jitter)
are needed to avoid collinearity




Behavioral vs. fMRI Experiments

Multiple Reagressors: Collinearity!!

Green curve =
signal model for #1
Red curve = signal
model for class #2
- Blue curve = signal
' model for #3

Purple curve =
#1+#2+#3
which is exactly = 1
* We cannot — in
principle or in
practice —
: s | distinguish sum of 3
No analysis can distinguish the cases sighal models from
Z(H)=10+ 5-#1 and constant baseline!!

are bad bad bad!

and an infinity of other possibilities

Image from AFNI



Behavioral vs. fMRI Experiments

f z=Data value ,
7= 1304100, Non-collinear

(well-posed)

Basis vectors
Ly .

r

Near-collinear
(ill-posed)

» Trying to fit data as a sum of basis vectors that are
nearly parallel doesn’t work well: solutions can be huge

» Exactly parallel basis vectors would be impossible:
» Determinant of matrix to invert would be zero




Questions?



Demonstration of viewing the time-series



Timing Files

onset duration trial_type
SUB-01_TASK-FLANKER_RUN-1_EVENTSTSV & DOWNLOAD 00 2.0 incongruent_correct
10.0 2.0 incongruent_correct
20.0 2.0 incongruent_correct

32.0 2.0 congruent_correct

duration & - N cos.. 42.0 2.0 congruent_correct
52.0 2.0 incongruent_correct

2.0 incongrue.. correct 64.0 2.0 congruent_correct

_ 76.0 2.0 congruent_correct
incongrue.. 0. correct 88.0 2.0 incongruent_correct

102.0 2.0 congruent_correct

congruent.. . correct
116.0 2.0 congruent_correct

congruent.. . correct

incongrue.. 0. correct

Congruent correct File Edit View SPM BasiclO
h ) Ded

Module List Current Module: M

congruent.. . correct

incongrue.. 0. correct

congruent.. . correct

<X
No Time Modulation

Yes

Specify a vector of onset times for this condition type.
Real numbers are entered.
An X-by-1 array must be entered.




The BOLD Response: Convolution

. L & 4, 4 & 7 B %I

Bob Cox, AFNI



How to Write out Timings?

o I N H v+ O ~ [ behavsubOl.xls [Compatibility Mode] Qv Secarch Sheet

Home Insert Page Layout Formulas Data EE View

A3 - fx 43.7179423237685 v
A B C D E ke G H I
1 WhyFace WhyFace WhyHand WhyHand HowFace HowFace HowHand HowHand
2 Onset (s) Duration (s) Onset (s) Duration (s) Onset (s) Duration (s) Onset (s) Duration (s)
3 43.72 8.28 21.23 9.02 61.59 7.49 2.27 10.58
4 s b 4 7.99 98.21 10.02 135.06 7.55 80.69 9.07
5 152.59 7.54 206.98 7.50 171.38 6.75 189.44 7.07
6 225.20 1 7.69 282.41 9.92 243.09 7.50 264.56 9.62
V{
8
2x2 Model Parametric Model 4=
Ready Average: 134.69 Count: 4  Sum: 538.77 H - ‘ + 150%



How to Write out Timings?

Depends on what stimulus presentation software you use
My advice: Write the timings in BIDS format (Onset, Duration, Trial Type, etc)

These can be easily edited and imported into any of the major packages

o & InitializeVariables
InitializeVariables

E] StroopCounterBalance 3. triallidx =
&% StroopCounterProc i. totalAcc
@ Welcome
[A] Instructions
CheckSkipPractice

eDOPfaCtice , s If c.GetAttrib("Session”) = 1 Then

Early on in the experiment (here, in ¢ Open "OnsetTimes_" & c.GetAttrib ("sul
the “InitializeVariables” InLine object) 10 Print #1, "Run", "Event", "Onset", "Dur"
create a timing file. Later on, after - Close #1
each trial add lines to the text file 2] End If
about the onset and duration of each
condition.
'Ilj DoExpTrials
|E Explnstructions .
[A] WaitScanner 3. Open "OnsetTimes
GetScanPulse
E ExpStrooplList
{0 JitterList
&% ExpStroopProc
@ ExpFixation
@ ExpStroopSlide

trib("E

|E Goodbye i - ) "
' Unreferenced E-Objects c-GetAtirib (“E Str
Close #1

1




DS000102 - & SUB-01 - &= FUNC - [J SUB-01_TASK-FLANKER_RUN-1_EVENTS.TSV

& DOWNLOAD

DURATION

TRIAL_TYPE

incongruen..
incongruen..
congruent ..
congruent_..
incongruen..
congruent_..
congruent_..
incongruen..
congruent ..
incongruen..
congruent_..
congruent_..
congruent_..
incongruen..
incongruen..
incongruen..

congruent ..

RESPONSE_T...

1.095
0.988
0.591
0.499
0.719
0.544
0.436

0.47

CORRECTNESS STIMVAR

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

correct

2

2

How to Write out Timings?

RSPONSE

1

1

STIMULUS

incongruent
incongruent
congruent
congruent
incongruent
congruent
congruent
incongruent
congruent
incongruent
congruent
congruent
congruent
incongruent
incongruent
incongruent

congruent

COND

cond003

cond003

cond001

cond001

cond003

cond001

cond001

cond003

cond001

cond003

cond001

cond001

cond001

cond003

cond003

cond003

cond001




Onset Times Recommendations

No matter how you choose to write them out, you need to verify them
Some scanners acquire a few “dummy scans” at the beginning

If the experiment has a motor response, check that contrast first




Overview of model fitting

Fit the Model at each voxel (“mass univariate”)

SPM12 (7219): Graphics
File Edit View Insert Tools Desktop Window SPM Figure Help

Statistical analysis: Design

secondgsg

Design description

Basis functions : hrf
Number of sessions : 1
Trials per session

2
Global normalisation




The General Linear Model (GLM)

Uses one or more regressors (independent variables)
to predict an outcome measure (dependent variable)

Y= X, + 62X, + B3X3+ €
Y= Outcome variable
[ = Beta Weights (parameter estimates)

X= Regressor

£ = Residual



The General Linear Model (GLM)
Y= (X, + 62X, + B3X3+ €

Assume that:
Y =GPA, X, =1Q, X, = Drinks per week, X; = Height

GPA = (B,*1Q)+ (B, * Drinks) + (B; x Height) + ¢

B,=0.05",8,=-0.07, 8, =0.01 (not significant)

IQ and drinks per week contribute to GPA; height doesn’t



The General Linear Model (GLM)

Minimize the distance between the
data and the line (error).

Absolute distance? squared 5 /E”'O': teml
distance? }6i —Y; — (/30 n 51Xi)
e; =Y; — Y;
>

Figure from Jeanette Mumford



The General Linear Model (GLM)

We can use these numbers to calculate the variance

SSE=Z(Y,-—§;-)2 =Y ¢

. Xe
N —2




The General Linear Model (GLM)

Test statistic

t=(x—n)/(s/~n)

where:
¢ x=the sample mean
W, = the hypothesized population mean

s = the sample standard deviation

n = the sample size




The General Linear Model (GLM)

Deriving a beta weight (B) can be calculated by using linear algebra:
Y = XA
X'Y = (X'X)p
(X'X)1X'Y =7

Var[f] = 6%(X'X) ™



The General Linear Model (GLM)

t-statistics in fMRI are conceptually similar, but computed slightly differently:
/ —1 v/
,_ c(X'X)'X'Y
Vo2e(X'X) 1!

T N- P N = Number of time-points
p = Number of regressors
where e=Y -X3=Y-Y



The General Linear Model (GLM)

Note: t-statistics are calculated at the 1st-level, but usually aren’t
carried into the 2nd-level analysis

In other words: Magnitude is carried to the group-level, not variance

This can be done in other programs, e.g. AFNI’s 3dMEMA






Applying the GLM to fMRI Data



Applying the GLM to fMRI Data

‘model regressor | Block data of one run at a voxel

model fitted to data

Noise ~same sizé as sighal chandge

Source: AFNI



Applying the GLM to fMRI Data

. [B] AFNI 2.56c: ED/runs_temp/ED_rl1_vr+orig & ED_rl_vr@3+orig

"\L\('\,“L-; J'\f{ I\Q’J / vt* \ /\ M\ \;

correlation with ideal = 0.56

. [B] AFNI 2.56c: ED/runs_temp/ED_rl1_wvr+ori g & ED_rl_vr@3+orig

iy

v

Source: AFNI



Applying the GLM to fMRI Data

1 l I I 1
0 20 40 60 g0 100 120 140 160 180 200

Source: Jeanette Mumford



Applying the GLM to fMRI Data

Revisiting the HRF

Canonical HRF: Width and delay are fixed, height is estimated as a beta



Applying the GLM to fMRI Data

Why use a double-gamma (e.g., model the undershoot?)
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Applying the GLM to fMRI Data
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Applying the GLM to fMRI Data
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Applying the GLM to fMRI Data

Design Contrasts Atlas

Event-related responses fitted response and adjusted data

N
w

which session (<=2) 1

N

Con

fitted response and adjusted data

1.5 %
|
¥
o ‘
R osh Inc
| - ‘ Con
I~
X
—_ 0
hold grid Box text $ attrib ¢ oo
3 05|
s |
[}
2 |
(7]
QL 1
=
whole brain eigenvariate CVA plot
1.5+
current cluster multivariate Bayes overlays... C
-2 -
small volume BMS p-value save... <
2.5 | \ | | I \ |
0 5 10 15 20 25 30 35
Hemodynamics clear exit peristimulus time {secs}
x = -42.00 y= -70.00 =z = -22.00 3.58




Applying the GLM to fMRI Data

Design Contrasts Atlas Fitted responses
Fitted responses . Inc-Con - All Sessions
fitted
Inc-Con - All Sessions
predicted or adjusted response? adjusted | ,L

scan or time

~
(9]
1B
o
™
| N,\
o~
o OF
hold grid Box text C attrib  C -
[}
wv
c
) :
Q -1r
(%]
[}
—
whole brain eigenvariate CVA plot
current cluster multivariate Bayes overlays... C -
small volume BMS p-value save... °
3 \ L L ! \ |
0 100 200 300 400 500 600
Hemodynamics clear exit time {seconds}
x = -42.00 y = -70.00 =z = -22.00 3.58




Design Contrasts Atlas

Fitted responses

Inc-Con - All Sessions

Applying the GLM to fMRI Data

predicted or adjusted response? adjusted
scan or time
hold grid Box text C attrib  C
whole brain eigenvariate CVA plot
current cluster multivariate Bayes overlays... C
small volume BMS p-value save... e
Hemodynamics clear exit

= -42.00 y=

-43.00 =z = 8.00

response at [-42, -43, 8]

Fitted responses
Inc-Con - All Sessions

fitted
------ plus error

100

200

300 400 500
time {seconds}

600



<>

Realign (E... Slice timing Smooth

Coregiste... © Normalise... © Segment
Specify 1st-level Review
Specify 2nd-level Estimate

Results

Dynamic Causal Modelling

Display Check Reg Render... ¢ FMRI ¢
Toolbox: ¢ PPIs ImCalc DICON mpo
Help Utils... C Batch Quit
Design Contrasts Atlas
Contrast estimates and 90% C.1.
Inc-Con - All Sessions
hold grid Box text < attrib <
‘ whole brain | ’ eigenvariate H CVA | ‘ plot
I current cluster | ’ multivariate Bayes | overlays. .. <
| small volume | ‘ BMS | | p-value | save... C
‘ Hemodynamics | | clear | | exit |

File

Edit

contrast estimate at [-42, -70, -22]

View Insert

0.5

Tools

Desktop

Window SPM Figure Help

Inc-Con - All Sessions
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&~ E - f
—
I
50—
—
100 —
SPM{T278} e —
150 (R e
200 o
250 .

Contrast estimates and 90% C.I.
Inc-Con - All Sessions

3 4
Design matrix

0.6

0.8 1 1.2
contrast




Applying the GLM to fMRI Data

Other options

Grand mean scaling: Removes intersession variance, allows for
combining data across subjects

Intensity normalization: Forces each volume to have the same mean
(not recommended)

N Session-specific grand mean scaling:
gs = 2in=19ns Multiplies each volume in session s
N by 100/g,




Percent Signal Change
Some recommend reporting percent signhal change instead of beta weights

More accurate reflection of effect size, more comparable
between studies

ROI tool like Marsbar will scale by the overall mean of the voxels in the region



Applying the GLM to fMRI Data

File Edit View SPM BasiclO
Oe=

Module List Current Module: fMRI model specification

fMRI model specification <-X Help on: fMRI model specification
Directory
Timing parameters
. Units for design
. Interscan interval
. Microtime resolution
. Microtime onset
Data & Design
Factorial design
Basis Functions
. Canonical HRF
.. Model derivatives Time and Dispersion derivatives
Model Interactions (Volterra) Do not model Interactions
Global normalisation None
Masking threshold 0.8
Explicit mask
Serial correlations AR(1)

Current Item: Model derivatives

No derivatives
Time derivatives
*Time and Dispersion derivatives

Specify...

Model HRF Derivatives. The canonical HRF combined with time and dispersion derivatives comprise an 'informed' basis set, as the
shape of the canonical response conforms to the hemodynamic response that is commonly observed.

The incorporation of the derivate terms allow for variations in subject-to-subject and voxel-to-voxel responses. The time derivative
allows the peak response to vary by plus or minus a second and the dispersion derivative allows the width of the response to vary.
The informed basis set requires an SPM{F} for inference. T-contrasts over just the canonical are perfectly valid but assume constant
delay/dispersion. The informed basis set compares favourably with eg. FIR bases on many data sets.

One of the following options must be selected:

*No derivatives




Applying the GLM to fMRI Data

== (anonical haemodynamic response
== Temporal derivative
Dispersion derivative
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Applying the GLM to fMRI Data

Benefits of time derivative

No interpolation of raw data, may capture variability in BOLD response

Cons: Requires an additional regressor in the model per condition



Applying the GLM to fMRI Data

Other options: Highpass filtering and prewhitening

50 I I I I | I I | I
-50 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Time (s)
300 | I I I I I I | |
-
© 200} .
=
OC_) 100
1 | | | | | | |
0 0.02 004 006  0.08 0.1 012 014 016  0.18 0.2

Frequency (1/s)



Power

1.2

1.15

1.1

10000

5000

Applying the GLM to fMRI Data

x 10
| | | | | | | | |
|| 1 | | | | l |
50 100 150 200 250 300 350 400 450 500
Time (s)
| | 1 | | | | | |
1 W\MNMMA’M
0.02 1.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 n.2

Frequency (1/s)



Applying the GLM to fMRI Data

Highpass filter removes frequencies below a certain threshold

15000 T T T T T T T T T

10000 1 .

5000 .
0 f I

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Frequency (1/s)

Power

15000

10000 .

5000 l\ A -
0 1

0 T 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Frequency (1/s)

Power

Filter below .01 Hz



Applying the GLM to fMRI Data

Y =X0+e¢€

Cov(e) =




Applying the GLM to fMRI Data

Cov(Ke) =

KY = KXB+ Ke



Applying the GLM to fMRI Data

Prewhitening

Gauss-Markov assumptions: Normally distributed errors, constant variance,
and no temporal autocorrelation



Applying the GLM to fMRI Data

Other options: Individual Modulation

Useful for beta-series correlation, MVPA classification

Trial 1 Trial 2

L S

- ,r~'—~"~;;-~ e
ANGD”M42 44 46 48 50 52 54 56 58 89 62

e BOLD Signal w—Delay 1 e 3 —=Delay 3
e G 1€ 1



Applying the GLM to fMRI Data

Interleaved Right-then-Left
Univariate
a
Correlation of Left & Right M1 Seeds Correlation of Left & Right M1 Seeds
RIGHT-THEN-LEFT CONDITION INTERLEAVED CONDITION
r=0.378 r=0.710

@

beta value %

01 035 E

@

o

3

. wn

Correlation -

Cc =

(s 4

0.002 0.004 0.006 0.008
vy ‘ el HE g iILIE

correlation

60 CT 90



Applying the GLM to fMRI Data

a Univariate Analysis b Right FFA Seed Correlation
CUE DELAY PROBE CUE DELAY PROBE
s -0.0005
. . -0.001
C -0.0015
11 16 21 26 31 36 41 46 51
- % ? Trial #
z=33 Z=33 —+—RIFG —s—RFFA
Delay Period Beta Series Correlation (r = 0.601)
z=51 " z=51 ’ ‘ ' * 23
t-value t-value PRt Pet 4L X dele / WA S
L 4.03 [T 0.0 6.02 [ 2.0 R ;

16 21 26 31 36 41 46 51




Applying the GLM to fMRI Data

Drawback: Very tedious to implement without scripting!

For AFNI users: Can use ‘IM’ basis function in 3dDeconvolve



Applying the GLM to fMRI Data

What about nuisance regressors, such as motion?

.. Multiple conditions
. . Regressors
.. High-pass filter 128

Factorial design
Basis Functions

Multiple regressors
Dir /Users/vincent/Data/tmp/TEST SYNC/2018/Data/SPM Labs/Subiects/sub01/func/whyhow/run 01
Up /Users/vincent/Data/tmp/TEST_SYNC/2018/Data/SPM_Labs/Subjects/sub01/func/whyhow/... |93
Prev /Users/vincent/Data/tmp/TEST_SYNC/2018/Data/SPM_Labs/Subjects/sub01/func/whyhows... [ v |

- rp_run_01.txt
precooked rrun_01.mat

[2] [Ed] [red Done Filter Reset
Selected 1 file. (Added 1/1 file.)
/Users/vincent/Data/tmp/2018/Data/SPM_Labs/Subjects/sub01/func/whyhow/run_01/rp_run_01.txt




Applying the GLM to fMRI Data

SPM12 (7219): Graphics
File Edit View Insert Tools Desktop Window SPMFigure Help

Statistical analysis: Design

Sn(1) WhyFace*bf(1)
+-Sn(1) WhyHand*bf(1)
-Sn(1) HowFace*bf(1)
+Sn(1) HowHand*bf(1)

Sn(1) constant

./run_01/precooked/swrrun_01.nii,1
./run_01/precooked/swrrun_01.nii, 11
./run_01/precooked/swrrun_01.nii,21
./run_01/precooked/swrrun_01.nii, 31
./run_01/precooked/swrrun_01.nii,41
./run_01/precooked/swrrun_01.nii,51
./run_01/precooked/swrrun_01.nii,61
./run_01/precooked/swrrun_01.nii,71
./run_01/precooked/swrrun_01.nii,81
./run_01/precooked/swrrun_01.nii,91
./precooked/swrrun_01.ni
./precooked/swrrun_01.nii, 111
./precooked/swrrun_01.nii, 121
./precooked/swrrun_01.nii, 131
./precooked/swrrun_01.nii, 141
./precooked/swrrun_01.nii, 151
./precooked/swrrun_01.nii, 161

. /precooked/swrrun_01.nii, 171
./precooked/swrrun_01.ni
./precooked/swrrun_01.nii, 191
./precooked/swrrun_01.nii,201
./precooked/swrrun_01.nii,211
./precooked/swrrun_01.nii,221
./precooked/swrrun_01.nii,231
./precooked/swrrun_01.nii,241
./precooked/swrrun_01.nii, 251
./precooked/swrrun_01.nii,261
./precooked/swrrun_01.nii,271
./precooked/swrrun_01.nii, 281

4
)
=

./precooked/swrrun_01.nii,300
parameters

(gray 3 not uniquely specified)

parameter estimability

Design description...

Basis functions : hrf
Number of sessions : 1
Trials per session
Interscan interval : 1.00 {s}
High pass Filter : [min] Cutoff: 128 {s}
Global calculation : mean voxel value
Grand mean scaling : session specific
Global normalisation : None




Applying the GLM to fMRI Data

Activation map with image Activation map when also
registration but without using using movement
movement estimates as regressors estimates as regressors

Source: AFNI



degrees

8 cclab@hammer:/data/dril...

Applying the GLM to fMRI Data

acell/nicotine/Test'HumanSub|/fmri_ra

translation

— X lranslation
y transiation

— 2 transiation

80 100
image

rotation

60 80 100 120

Editor - /usrflocal/spmbat.. SPM5 (cclab)

180

EER UUWUNNPE M=

\ A A | " LL i
'. input/202 Stroop DM spm.txt

Figure 1




Applying the GLM to fMRI Data

Perennial Question: How much is too much?

Guideline from days of yore: >1 voxel over entire run, >0.5 voxel between volumes



Applying the GLM to fMRI Data

Other nuisance regressors: DVARS, Framewise Displacement (FD)

Derivative Variance (DVARS) measures abrupt global signal changes
from volume to volume (Power et al., 2011)

Volumes that exceed a specified threshold are flagged for scrubbing:
Inserting that volume as a regressor into the GLM



Applying the GLM to fMRI Data




Applying the GLM to fMRI Data

Project Tools Help SETUP DENOISING (1st-level) ANALYSES (1st-level) RESULTS (2nd-level)
All analyses
First-level covariates / timeseries Select covariate files
Basic
rest
Structural Covariates Subjects Sessions Covariate name befauItMode.MPFC
) ) . ) ROl.mat
realignment Subject 1 Session 1 scrubbing nonparametricroi_pindex.mat
Fursichel QC_timeseries Subject 2 B
Subject 3
QC_FDconn Subject 4
Subject 5
Subject 6
ROIs
Conditions

Covariates (1st-level)
Covariates (2nd-level)

Options

- covariate tools.

Preprocessing

QA plots

Done Step 4/4: Define/Edit second-level analyses

storage: 159.8Gb available (8%) Rl A A



Before we begin the Demo: SPM Terms for Analysis

1st-Level Analysis: Individual subject (all runs within the subject)

2nd-Level Analysis: Group-Level Analysis (all subjects within the experiment)



Also Before we begin: Contrasts and Contrast Weights

A contrast is simply one condition’s beta weight subtracted from another

e.g., A-B

General recommendations: Model everything that is related to the task,
and don’t model any baseline events (e.g., implicit baseline)



Also Before we begin: Contrasts and Contrast Weights

. Subject/Session
.. ocans 300 files
.. Conditions
... Condition
. Name WhyFace

.. Onsets L9169 117.2590563 152.5798844 225.1941691)]
... Durations ..9262 7.674989138 8.015399588 8.542317722]

.. ime Modulation No Time Modulation
... Parametric Modulations

.. Orthogonalise modulations Yes




Also Before we begin: Contrasts and Contrast Weights

Example: Pos/Neg/Neu images

omettime® [Duations) | Desiption
m e vewe
S S [




Also Before we begin: Contrasts and Contrast Weights

Example: Where is Pos activation greater than Neg activation?

Contrast weights for each side should sum to +1 and -1

- PosIAPS | Neg IAPS

Face after | Face after | Face after
Pos Neg Neu
PosIAPS > 1 1
NeglAPS




Also Before we begin: Contrasts and Contrast Weights

Where is Pos activation greater than Neu activation?

- PosIAPS | Neg IAPS

Face after | Face after | Face after
Pos Neg Neu
PosIAPS >




Also Before we begin: Contrasts and Contrast Weights

Where is both Pos and Neg activation greater than Neu activation?

- PosIAPS | Neg IAPS

Face after | Face after | Face after
Pos Neg Neu
PosIAPS >




Also Before we begin: Contrasts and Contrast Weights

Where is average face activation greater than baseline?

- PosIAPS | Neg IAPS

Face after | Face after | Face after
Pos Neg Neu
PosIAPS > 1 1
NeglAPS




Also Before we begin: Contrasts and Contrast Weights

Contrast weights need to be weighted for number of runs as well

define contrast...

Inc-Con
® t-contrast -contrast

contrast(s)

Module List Current Module: Contrast Manager

— Contrast Manager <- Help on: Contrast Manager
contrast — Select SPM.mat <-
vector 0.5 -0.5 0.5 -0.5 — Contrast Sessions
— . T-contrast
e — .. Name <-X
—

____ .. Weights vector <-X
. . Replicate over sessions Replicate&Scale
Delete existing contrasts No

Design matrix

parameter estimability




Module List

Named File Selector
Realign: Estimate & Reslice
Slice Timing

Coregister: Estimate & Reslice
Segment

Normalise: Write

Smooth

File Set Split

fMRI model specification
Model estimation

Contrast Manager

Current Module: Contrast Manager

Help on: Contrast Manager
Select SPM.mat
Contrast Sessions

. T-contrast

.. Name

.. Weights vector

.. Replicate over sessions
. T-contrast

.. Name

.. Weights vector

.. Replicate over sessions
. T-contrast

.. Name

.. Weights vector

.. Replicate over sessions
. T-contrast

.. Name

.. Weights vector

.. Replicate over sessions
Delete existing contrasts

Also Before we begin: Contrasts and Contrast Weights

DEP Model estimation: SPM.mat File

Inc-Con
[1-1]
Replicate&Scale

Con-Inc
[-11]
Replicate&Scale

Inc
[10]
Replicate&Scale

Con

[01]
Replicate&Scale
No




15t-level setup: Demonstration



Other Experimental Modeling Options

Parametric Modulation
Finite Impulse Response (FIR)

Why do these types of analyses?



Parametric Modulation

Uses Auxiliary Behavioral Information (ABI)
Continuous (or several finely graded) ABI levels

Parametric modulators are estimated in addition
to the regressor they modulate




Parametric Modulation

Example: Light intensity

Regressor for a “Light” trial, and also a regressor
for the intensity of the light









Fig. 1. (A) An illustra- Time
tion of the event-related
task design. Duringeach [ .| 4, \ . RPN "1 B R O .
trial, the participant was response variable
presented for 3 s with a interval IS
(3secs) (mean 2.6 secs)

display showing the size
of the potential gain (in
green) and loss (in red).
After the accept or reject
response, a variable inter-
val was presented to allow
for optimal deconvolution
of fMRI responses to each
trial (27). Gambles were
not resolved during scan-
ning. The values of gain
and loss for each trial

10 Potential gain 40

Ritt=fentn
—

.......

-20

Gain/loss matrix

were sampleq from the B Probability of acceptance C  Response time (secs)
gainfloss matrix, asshown 5 1.0 - 1.6
here for two example £ 0.8 @
gambles; a gamble from § § 1.5
each cell in this 16 x 16 = %9 %
matrix was presented dur- £ 0.4 = .
ing scanning, butthe data 2 . - -
were collapsed intoa 4 x & o :
4 matrix for analysis. Al % ‘ 0.0 o

matrix for analysis. o P 10 pos
combinations of gains and Potential Gain ($) Potential Gain ($)

losses were presented. ISI,

interstimulus interval. (B) Color-coded heatmap of probability of gamble acceptance at each level of
gain/loss (red indicates high willingness to accept the gamble, and blue indicates low willingness to
accept the gamble). (€) Color-coded heatmap of response times (red indicates slower response times,
and blue indicates faster response times).




tion (22).

Examination of regions of interest in the
striatum and VMPFC from the gain/loss con-
junction analysis (Fig. 3) revealed that these

Fig. 3. Conjunction analysis re- A
sults. (A) Map showing regions with
conjointly significant positive gain
response and negative loss response
(P < 0.05, whole-brain corrected, in
each individual map) (see also table
S1). Red pixels indicate regions
showing significant conjunction; green
arcles highlight clusters included in
the respective heatmaps to the right.
L, left; R, right. (B) Heatmaps were
created by averaging parameter
estimates versus baseline within each
cluster in the conjunction map for
each of the 16 cells (of 16 gambles
each) in the gain/loss matrix; color
coding reflects strength of neural
response for each condition, such
that dark red represents the stron-
gest activation and dark blue repre-
sents the strongest deactivation.

. . - —
sitivity to losses versus gains) is highly correlated
across risky and riskless contexts (23). Therefore,
we surmise that a similar mechanism may con-
tribute to other manifestations of loss aversion.

Striatum

Potential Loss ($)

20 30 40
Potential Gain ($)

Ventromedial prefrontal cortex

n

Potentlal Gam (%)

o

Potential Loss (S)
T

NN

r=0.85, P<0.001

o —
n — "0

o

Behavioral loss aversion [In(A)]

0355 0 50 100 150
Neural loss aversion [(—B,,.,) — Byain)
Fig. 4. Scatterplot of correspondence between neu-
ral loss aversion and behavioral loss aversion in
ventral striatum [Montreal Neurological Institute

coordinates (x, y, 2): 3.6, 6.3, 3.9; center of gravi
in millimeters]. Regression line and P value were
computed with the use of robust regression b
iteratively reweighted least squares to prevent the
influence of outliers; however, this regression also
remained highly significant (P = 0.004) when the
extreme data point (top right-hand corner) was
removed from the analysis. Bjoss and Bgain are the
unstandardized regression coefficients for the loss
and gain variables, respectively.




Parametric Modulation: Mean Centering

Predictor Correlation = 0.8232

M
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. j ¥V \ N

Courtesy of
Bob Spunt




Parametric Modulation: Other Considerations

Orthogonalizing the regressors as part of the design



File Edit View SPM BasiclO

O =
Module List Current Module: fMRI model specification
.... Time Modulation No Time Modulation
....Parametric Modulations
..... Parameter
...... Name <-X
...... Values <-X
...... Polynomial Expansion <-X
..... Parameter
...... Name <-X
...... Values <-X
...... Polynomial Expansion <-X
....0Orthogonalise modulations Yes
. Multiple conditions
.. Regressors
.. Multiple regressors
. High-pass filter 128

Factorial design
Basis Functions
. Canonical HRF

.. Model derivatives No derivatives
Model Interactions (Volterra) Do not model Interactions
Global normalisation None

Current Item: Orthogonalise modulations

*Yes
No

Specify...

Orthogonalise regressors within trial types.
One of the following options must be selected:
*Yes

*No




stimulus

Low collinearity
ISI=3s

Activation magnitude

10
Subject #

stimulus

High collinearity
ISI=1s

Activation magnitude

10
Subject #

stimulus

Feedback
orthogonalized
with respect to
Stimulus

Activation magnitude

- ] Mumford et al., 2015

5 10 15
Subject #




Regressors without
orthogonalization

Correct
orthogonalization for
interpretable

Intensity second

SPM
Intensity first
RT second




Demonstration of Parametric Modeling Setup



Other Experimental Modeling Options

Parametric Modulation

Finite Impulse Response (FIR)



Other Experimental Modeling Options

Parametric Modulation



Finite Impulse Response (FIR)

Basis functions such as the HRF assume a stereotypical shape

Source: mri-g.com




Finite Impulse Response (FIR)

But what if we don’t want to assume a shape?

Example: You want to see whether the peak for condition
A is later than the peak for condition B

Another example: You think the overall shape of the
BOLD response is different between patients and controls,
even though the amplitude is the same



Finite Impulse Response (FIR)

You specify the window length and number of timepoints

e.g.: 20s window, 10 timepoints

File Edit View SPM BasiclO

Module List Current Module: fMRI model specification

Help on: fMRI model specification
Directory
Timing parameters
. Units for design
. Interscan interval
. Microtime resolution
. Microtime onset
Data & Design
Factorial design
Basis Functions
. Finite Impulse Response
.. Window length
.. Order
Model Interactions (Volterra) Do not model Interactions
Global normalisation None
Masking threshold 0.8
Explicit mask
Serial correlations AR(1)




images

Sn(1) Inc*bf(9)
Sn(1) Con*bf(1)

1) Con*bf(3)
Sn(1) Con*bf(5)
Sn(1) Con*bf(7)

Si

Finite Impulse Response (FIR)

Statistical analysis: Design

§-Sn(1) Con*bf(9)
Sn(2) Inc*bf(3)
Sn(2) Inc*bf(5)
Sn(2) Inc*bf(7)

T

parameter estimability

Design description...

Basis functions :
Number of sessions :
Trials per session :
Interscan interval :
High pass Filter :

Global calculation
Grand mean scal
Global normalisatio

Finite Impulse Response
2

22

2.00 {s}

[min] Cutoff: 128 {s}
mean voxel value
session specific

: None

Sn(2) Con*bf(9)

Sn(2) constant

_task-flanker_run-1_bold.nii,1

..06_task-flanker_run-1_bold.nii, 11
..06_task-flanker_run-1_bold.nii,21
..06_task-flanker_run-1_bold.nii,31
..06_task-flanker_run-1_bold.nii,41
..06_task-flanker_run-1_bold.nii,51
..06_task-flanker_run-1_bold.nii,61
..06_task-flanker_run-1_bold.nii,71
..06_task-flanker_run-1_bold.nii,81
..06_task-flanker_run-1_bold.nii,91
..6_task-flanker_run-1_bold.nii, 101
..6_task-flanker_run-1_bold.nii, 111
..6_task-flanker_run-1_bold.nii, 121
..6_task-flanker_run-1_bold.nii, 131
..6_task-flanker_run-1_bold.nii, 141

_task-flanker_run-2_bold.nii,5

..06_task-flanker_run-2_bold.nii, 15
..06_task-flanker_run-2_bold.nii,25

..06_task-flanker_run-2_bold.nii,35
..06_task-flanker_run-2_bold.nii,45
..06_task-flanker_run-2_bold.nii,55
..06_task-flanker_run-2_bold.nii,65
..06_task-flanker_run-2_bold.nii,75
..06_task-flanker_run-2_bold.nii,85
..06_task-flanker_run-2_bold.nii,95
..6_task-flanker_run-2_bold.nii, 105
..6_task-flanker_run-2_bold.nii, 115
..6_task-flanker_run-2_bold.nii, 125
..6_task-flanker_run-2_bold.nii, 135
..6_task-flanker_run-2_bold.nii, 146

(gray — 3 not uniquely specified)

design orthogonality

* ¥
TT e hh

*

O OO




Finite Impulse Response (FIR)

BOLD signal change over TRs for individual stimuli conditions :

superiortemporal_timeseries.txt

BOLD % Signal Change

Image by Karthik Ganesan



Finite Impulse Response (FIR

LPFC (area 46) . Lat PreM (area 6)

I Relational Abstraction Integration Overlap

FPC (area 10.48) 0 Caudal SFS (area 6)

Parameter Estimate

5 10 12 14 16 18 20 2

Time (secs) Nee et al, 2013




Demonstration of FIR Modeling Setup



ImCalc: The Image Calculator
One of the most versatile tools is the image calculator
Every package has one (AFNI, FSL, MRtrix, etc.)

Simple to do basic arithmetic on a 3D image



ImCalc: The Image Calculator

define contrast..

Inc-Con Session 1

® t-contrast F-contrast

contrast(s)

contrast
weights
vector

Design matrix

Cancel

parameter estimability

/Users/ajahn/Desktop/Flanker/sub-06/1stLevel

Up /Users/ajahn/Desktop/Flanker/sub-06/1stLevel
/Users/ajahn/Desktop/Flanker/sub-06/1stLevel

RPV.nii, 1

D | W, (S |
T

beta_0001.nii,1
beta_0002.nii,1

(7] oo el |

Frames

Selected 0/[1-1] files. (Initial selection.)

beta_0003.nii,1
beta_0004.nii,1
beta_0005.nii,1
beta_0006.nii,1
con_0001.nii,1
con_0002.nii,1
con_0003.nii,1
con_0004.nii,1
mask.nii,1
spmT_0001.nii,1
spmT_0002.nii,1
spmT_0003.nii,1
spmT_0004.nii,1

Filter Reset




ImCalc: The Image Calculator

Realign (E...

Slice timing Smooth

Coreqiste... Normalise... ¢

Segment

Specify 1st-level Review

Specify 2nd-level Estimate

Results

Dynamic Causal Modelling

Display Check Reg Render... © FMRI

Toolbox: < PPls ImCalc DICOM Import

Help Utils... Batch Quit

‘File Edit View SPM Basicl
0 &M b

Module List

Image Calculator

0]

Current Module: Image Calculator

Help on: Image Calculator
Input Images
Output Filename
Output Directory
Expression
Additional Variables
Options

. Data Matrix

. Masking

. Interpolation

. Data Type

Current Item: Output Filename

2 files
Inc-Con_Session1

i1-i2

No - don't read images into data matrix
No implicit zero mask

Trilinear

INT16 - signed short

Inc-Con_Session1

Specify...

QOutput Filename
The output image is written to current working directory unless a valid full pathname is given. If a path name is given here, the

output directory setting will be ignored.

If the field is left empty, i.e. set to ", then the name of the 1st input image, preprended with 'i', is used (change this letter in the

spm_defaults if necessary).
A string is entered.




ImCalc: The Image Calculator

File Edit View Insert Tools Desktop Window SPM Figure Help
File Edit View Insert Tools Desktop Window SPM Figure Help

Crosshair Position Origin /1stLevel/beta_000 Crosshair Position Origin File: ./1stLevel/beta_0002. nii
0.030.0 30 mensions: 53 x 63 x 52 : 0.0 30.0 30.0 Dimensions: 53 x 63 x 52
27.0 48.3 34.3 Datatype: float32 . 27.0 48.3 34.3 Datatype: float32

Intensity: Y = 1 X itve Y =
Inten: 00696186 Intensity: -0.37464 Intensity: Y = 1 X

LTI (R0 =D Iseilf) spm_spm:beta (0002) - Sn(1) Con*bf(1)
right {mm} q
st tmm Vox size: -3 x 3 x 3 right {mm} )

forward {mm} Vox size: -3 x 3 x 3

Origin: 27 38.3 24.3 forward {mm} )
Origin: 27 38.3 24.3

up {mm} .
Cos: 1.000 0.000 0.000 up {mm}
pitch {rad} Dir Cos: 1.000 0.000 0.000
0.000 1.000 0.000 pitch {rad}
roll {rad} 0.000 1.000 0.000
0.000 0.000 1.000 roll {rad}
yaw {rad} 0.000 0.000 1.000
yaw {rad}
resize {x}
resize {x}
resize {y} Full Volume Hide Crosshair -
resize {yjy Full I < Hi rosshair
resize {z} World Space ) Trilinear interp. ) 4 Vol de Crossha
. N resize {z} World Space Trilinear interp.
Set Origin Reorient... Auto Window Add Overlay...
Set Origin Reorient... Auto Window Add Overlay...




ImCalc: The Image Calculator

File Edit View Insert Tools Desktop Window SPM Figure Help

Crosshair Position Origin File: ./Inc-Con_Session1.nii

0.0 30.0 30.0 Dimensions: 53 x 63 x 52
27.0 48.3 34.3 Datatype: int16
Intensity: 0.375347 Intensity: Y = 0.000184054 X
spm - algebra
right {mm}
Vox size: -3 x 3 x 3
forward {mm}
Origin: 27 38.3 24.3
Dir Cos: 1.000 0.000 0.000
0.000 1.000 0.000

up {mm}
pitch {rad}

roll {rad}

0.000 0.000 1.000
yaw {rad}
resize {x}
resize {y} Full Volume Hide Crosshair

resize {z} World Space Trilinear interp.

Set Origin Reorient... Auto Window Add Overlay...




Demonstration



Preview of Today’s Lab

Dataset collected by Emily Falk; 2x2 factorial design

QUESTION
Why How

Is the person Is the person
expressing self-doubt? looking to their side?

Face @

STIMULUS

Is the person Is the person
helping someone? using both hands?

Hand| = @ ] '”‘]
\ £




Preview of Today’s Lab

Block design

Sn(1) WhyFace*bf(1)
Sn(1) WhyHand*bf(1)
Sn(1) HowFace*bf(1)
Sn(1) HowHand*bf(1)
Sn(1) R1
Sn(1) R2
Sn(1) R3
Sn(1) R4
Sn(1) RS
Sn(1) R6

design orthogonality sn(1 ) constant

Measure gi)s value of cosine of an%le between columns of design matrix
ac

Scale : k - colinear (cos +1
white - ortho%c)ma cos=0

gray - not orthogonal or colmear




Preview of Today’s Lab

....Name
....Onsets
....Durations
... Iime Modulation
. ... Parametric Modulations
... Orthogonalise modulations
Condltlon

.“.Name
....Onsets
....Durations
. ... lime Modulation

.. Parametric Modulations
....Orthogonalise modulations
.. Multlple conditions
.. Regressors
.. Multiple regressors

. High-pass filter
Factonal design
Basis Functions
. Canonical HRF
.. Model derivatives
Model Interactions (Volterra)
Global normalisation
Masking threshold
Explicit mask
Serial correlations

Current Item: Director

HowFace

...284 135.0593544 171.3800147 243.0883199]
...4532 10.7859291 8.894711134 9.210554915]

No Time Modulation
Yes

HowHand

...6296 80.6916593 189.4403629 264.5608179]
..313 10.45648544 9.137848595 10.19211621]

No Time Modulation

Yes

...eLab/sub05/func/whyhow/run_01/rp_run_01 .txt

128

No derivatives

Do not model Interactions
None

0.8

AR(1)




Questions?



