fMRI Course, Day 8: Design Optimization and 2nd-Level Analysis August 8th, 2021

Questions from previous lecture?

How did the lab go?

Did the contrasts make sense?

What was the most confusing part of the lab?

Questions:

How to increase the size of the t-statistic?
 How to deal with low-frequency noise?
 Should we lowpass filter fMRI data?

How did the lab go?

What is collinearity? How can we reduce it?

If I orthogonalize X2 with respect to X1, what does that mean?

Today's Lecture

Design optimization and power analysis

OptimizeX, Gpower, optseq

Group-level analysis options

Other Statistical Scenarios

Review So Far

From stimulus to the BOLD response

How tissue properties, blood flow, and magnetic properties interact

Creating contrast images from T1- and T2-weightings

Preprocessing Steps

Brain extraction (or "skull stripping")

Motion Correction

Slice Timing Correction

Smoothing

Registration

Normalization

Temporal Filtering

Review So Far

Overview of the General Linear Model

Parameter Estimates

Creating beta maps and contrast maps

Fit at each voxel ("mass univariate" approach)

Bob Cox, AFNI

Let's look at some GLMs, and see if you can identify each part!

lise

S

Review: SPM Terms for Analysis

1st-Level Analysis: Individual subject (all trials across runs)

2nd-Level Analysis: Group-Level Analysis (all subjects within the experiment)

Review of Collinearity

Last week, we looked at a correlation matrix

ЛК	PUBLISH	VIEW										
nsert	fx 🗗 🕶	in the second se	> 🛃 (Run Section	\mathbf{b}							
ient %	в	Breakpoints Ru	in Run and	🖳 Advance	Run and							
EDI	IT BI	REAKPOINTS	Auvance	RUN	Time							
Flank	er 🕨 sub-01 🛛	1stLevel										
Z Edit	or – /Users/aj	jahn/Downloa	ds/fmridata/L	IPREAD/Subj	ects/Dec	oding_audOnly_RS	A_ROI.m				Ē	
	nvertOnsetTime	es.m 🗶 Deco	LUC LO			LITLIC AC	y_MVPA_ROI.m		ig.m × decoding_	generate_c	Inc*bf	
67											in(1)	
68	°°°	Decide	whether	you w	ant	to see th	e search	light.	/ROI/ (durin		
69 –	cfg	.plot_s	elected	l_voxel	s = !	500; % 0:	no plot	ting,	1: every	step		
70				_					-			
71	200 C	Add add	itional	outpu	t me	asures if	you lik	e				
72	% See help decoding_transform_results for possible measures											
73				5_		—						
74	% C	<pre>% cfg.results.output = {'accuracy minus chance', 'AUC'}; % 'acc</pre>										
75		J				· · · · · , _ · · -		,				
76	% Y	ou can	also us	e all	meth	ods that	start wi	th "t	ransres "	e.a	atrix	
77	2	<pre>% cfg.results.output = {'SVM_pattern'};</pre>										
78	% W	% will use the function transres SVM pattern.m to get the patte										
79	% 1	% linear svm weights (see Haufe et al. 2015. Neuroimage)										
80							-,,	neur	olinage,			
81	200	% Nothing needs to be changed below for a standard leave-one-r										
82	00	%% validation analysis.										
82 83	00	VUCLUUC	Lon and									
84	% T	% The following function extracts all both names and correspond										
85 85	% n	The following function extracts all beta names and correspond s numbers from the SDM mat										
86 –	rog	regressor names - design from spm(['/lisers/ajahn/Downloads/fmri										
00	reg	regressor_names = design_trom_spm(['/USers/ajann/DownLoads/tmri										
07	• E	% Extract all information for the off files structure (labels										
00		<pre>% Extract all information for the crg.files structure (labels w ofa - decoding describe data(ofa labelrames labels regresser re-</pre>										
09 -	cig	= ueco	arng_ae	SCLTDG	_uat	a(cry, cab	echames,	Label	s, regresso			
90	o. T	hia ara		. 1				al da	tion dosi			
91	% This creates the leave-one-run-out cross validation design:											
47 - 	Ста	. desidn	= make	nesia	n cv	(ста):				-		
Comm	and Window								•			
a	ns =										design orthogonality	
	1.00	000 -0	0.0925		0	0	0.46	35	0		J	
	-0.09	925 1	L.0000		0	0	0.46	25	0			
		0	0	1.00	000	-0.0655		0	0.4588			

1.0000

0.4655

0

0.4655

1.0000

0

0

0

1.0000

-0.0655

0.4588

0

0

0

0.4625

Statistical analysis: Design orthogonality

Measure : abs. value of cosine of angle between columns of design matrix Scale : black - colinear (cos=+1/-1) white - orthogonal (cos=0) gray - not orthogonal or colinear

fx >>

0

0

0.4635

Review of Collinearity

Rule of thumb: Correlations of 0.4 or greater are considered "moderate" (source: AFNI command xmat_tool.py)

However, a high correlation between one set of regressors may not matter, given the regressors you are focused on

The challenge is to include as many regressors as is reasonable, without overfitting or introducing collinearity

Variance Inflation Factor

What what if one regressor is a linear sum of two or more other regressors? Pairwise correlations don't show this

e.g., does X₁=X₂+X₃?

Variance Inflation Factor

$X_1 = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \epsilon$

 $\mathsf{R} = Cor(X_1, \hat{\beta}_0 + \hat{\beta}_1 X_2 + \hat{\beta}_2 X_3) = Cor(X_1, \widehat{X_1})$

Example

 $cor(X_1, X_2) = cor(X_1, X_3) = .39$

 $\overline{X_1} = \beta_1 X_2 + \beta_2 X_3$

What's the solution for the betas?

$$X_1 = \widehat{X_1} \implies cor\left(X_1, \widehat{X_1}
ight) = 1$$

Example

$$VIF = \frac{1}{1 - R^2} = \frac{1}{1 - [cor(X_1, \widehat{X_1})]^2}$$

Goal: VIF < 5

What is a cutoff? VIF no greater than 10

Repeat the same process for each regressor in the model

Detects any collinearity from any combination of regressors

Matlab code: vif = diag(inv(corrcoef(X)))';

Where "X" is the design matrix

Useful for checking whether a design has high collinearity

Solutions: Remove the regressor, or change the design

These edits can be done <u>before</u> scanning

Two terms you will come across are <u>Efficiency</u> and <u>Power</u>

Let's begin with Power: Can you detect an effect if it is actually there?

As variance increases, power decreases

Efficiency is inversely proportional to variance

$$\hat{\sigma}^2 = rac{e'e}{N-p}$$

where $e = Y - X\hat{\beta} = Y - \hat{Y}$

All measures of efficiency are relative

Example: You have a fixed number of subjects that you can scan (due to budget, population, etc.)

- **Options:**
- 1. Scan longer
- 2. Include more trials
 - 3. Increase ITI
- 4. Create a more efficient experiment

Figure from Jeanette Mumford

Slides from AFNI

Estimation vs. Detection

Detection is observing a signal if it is really there

Estimation is the analysis of the finer details of the signal, such as the shape of the BOLD response

There tends to be a tradeoff between the two

Fundamental Trade-off

Slide courtesy of Tom Liu

Optimization Strategies

Let's say we just want to increase our efficiency; how to choose?

You could just create designs, calculate efficiency, and repeat

Drawbacks of this approach?

Optimization Strategies

Permuted block design

Start with stimuli blocked and then randomly permute

Optimization Strategies

Genetic algorithm

Resources

Welcome to the Optseq Home Page

optseq2 is a tool for automatically scheduling events for rapid-presentation event-related (RPER) fMRI experiments (the schedule is the order and timing of events). Events in RPER are presented closely enough in time that their hemodynamic responses will overlap. This requires that the onset times of the events be jittered in order to remove the overlap from the estimate of the hemodynamic response. RPER is highly resistant to habituation, expectation, and set because the subject does not know when the next stimulus will appear or which stimulus type it will be. RPER is also more efficient than fixed-interval event related (FIER) because more stimuli can be presented within a given scanning interval at the cost of assuming that the overlap in the hemodynamic responses will be linear. In SPM parlance, RPER is referred to as 'stochastic design'.

The flexibility of RPER means that there are a huge number of possible schedules, and they are not equal. optseq2 randomly samples the space of possible schedules and returns the 'best' one, where the user can control the definition of 'best'. Cost functions include: average efficiency, average variance reduction factor (VRF), and a weighted combination of average and stddev of the VRF. The user can also specify that the first order counter-balancing of the sequence of stimuli be pre-optimized.

Download the <u>Linux version</u> of optseq2. Download the <u>Linux x86 64 version</u> of optseq2. Download the <u>MacOSX-PowerPC version</u> of optseq2. Download the <u>MacOSX-Intel version</u> of optseq2. Download the <u>Cygwin version</u> of optseq2.

(base) ajahn:~/Desktop/Flanker/2ndLevel_Inc-Con\$ optseq2 --ntp 160 --tr 2 --psdwin 0 20 2
--ev disgustingPic 2 20 --ev attractivePic 2 15 --ev neutralPic 2 30 --evc 1 -1 0 --nkeep
3 --o IAPS --tnullmin 2 --tnullmax 8 --nsearch 1000

Why not just use the best one?

0.0000	2	2.000	1.0000	attractivePic
2.0000	0	2.000	1.0000	NULL
4.0000	2	2.000	1.0000	attractivePic
6.0000	0	2.000	1.0000	NULL
8.0000	1	2.000	1.0000	disgustingPic
10.0000	0	2.000	1.0000	NULL
12.0000	3	2.000	1.0000	neutralPic
14.0000	0	4.000	1.0000	NULL
18.0000	1	2.000	1.0000	disgustingPic
20.0000	0	2.000	1.0000	NULL
22.0000	3	2.000	1.0000	neutralPic
24.0000	0	2.000	1.0000	NULL
26.0000	1	2.000	1.0000	disgustingPic
28.0000	0	2.000	1.0000	NULL
30.0000	3	2.000	1.0000	neutralPic
32.0000	0	2.000	1.0000	NULL

Resources

NeuroDesign

This toolbox helps researchers with the planning of experimental designs for fMRI experiments. In short: depending on the exact time and order of stimulus presentations, a study can achieve higher statistical power or efficiency for estimating the brain signal. As such, depending on the design criteria, you'll have more power with fewer subjects or with shorter experiments. For more details about the methods, please see the methods section, or take a look at the step-by-step tutorial on this page. Do you want to know how to run an optimisation on your computer without the GUI, go to the package information page.

Help Wanted

Resources

	🖯 🔿 🔿 OptimizeX Setti	ngs
G	ieneral Settings	
TR you will use to acquire images \rightarrow	TR (s):	1
High-pass filter you will use to analyze images $ ightarrow$	High-Pass Filter Cutoff (s):	128
т	ask Settings	
# of conditions in your design \rightarrow	N Conditions:	4
# of trials per condition (unbalanced OK, e.g. 25 20 15 25) \rightarrow	N Trials Per Condition:	20 20 20 20
blocks = trials from same condition occurring in a row \rightarrow	Maximum Block Size:	3
т	iming (s)	
duration of your trials (0 for purely event-related) \rightarrow	Trial Duration:	3
mean interstimulus interval	Mean ISI:	3
minimum value for interstimulus interval $ ightarrow$	Min ISI:	2
maximum value for interstimulus interval $ ightarrow$	Max ISI:	6
"rest" interval to add to beginning of scan $ ightarrow$	Time before first trial:	10
"rest" interval to add at end of scan $ ightarrow$	Time after last trial:	10
o	ptimization Settings	
number of "optimal" designs to save \rightarrow	N Designs to Save:	5
number of generations to test \rightarrow	N Generations to Run:	50
# of designs to include in each generation \rightarrow	N Designs Per Generation:	1000
maximum amount of time to run the program \rightarrow	Max Time to Run (minutes):	2

Cancel

2 0K

Resources

000	Settings	
How many contras	ts of interest?:	2
Cancel		ок

This is me telling the software that I am looking for a design that maximizes the efficiency of two contrasts among my conditions.

This is me telling the software that although I do care about the comparison among predictors 1 and 3 (**Contrast 1**), I actually care *more* about the comparison of predictors 2 and 4 (**Contrast 2**).

The "Best" Design Matrix

Resources

	Α	B	С	D	E
1	Trial	Condition	Onset	Duration	ISI
2	1	3	10.00	3.00	4.77
3	2	1	17.77	3.00	7.32
4	3	2	28.10	3.00	6.03
5	4	4	37.13	3.00	5.20
6	5	1	45.33	3.00	4.04
7	6	4	52.37	3.00	6.31
8	7	3	61.68	3.00	2.69
9	8	2	67.37	3.00	4.92
10	9	3	75.29	3.00	4.45
11	10	1	82.74	3.00	2.13
12	11	3	87.88	3.00	2.04
13	12	2	92.91	3.00	2.87
14	13	2	98.78	3.00	2.56
15	14	4	104.35	3.00	2.59
16	15	4	109.93	3.00	3.53
17	16	3	116.46	3.00	4.43
18	17	1	123.88	3.00	3.10
10	18	1	120 00	3 00	1 77

Optimization Strategies: Summary

Each resource generates multiple designs

There is no best design; all efficiencies are relative!

Also need to consider whether the design "feels" right

Remember this?

Power analyses for behavioral studies are simpler:

Easier to recruit large N

Relatively inexpensive to run lots of subjects

Behavioral effects can be very strong

Now for imaging studies:

More difficult to recruit large N (e.g., >50 per study)

Expensive to run lots of subjects (\$500-\$900 per hour)

Imaging effects can be very weak

Several sources of noise

What happens during grant writing?

Becomes a hunt for 80% power

Most fMRI studies won't have this kind of power, for the reasons listed above

Does that mean we shouldn't even do it in the first place?

What are reasonable ranges for power, given effect size?

What are reasonable ranges for power, given effect size?

What are reasonable ranges for power, given effect size?

What is the best way to estimate power?

What about estimating power from another published study?

Keep in mind that only significant results are usually published; this may just contribute to the file drawer problem (to be discussed more on Tuesday)

What about calculating power <u>after</u> a study is run? (e.g., post-hoc power analysis?)

This is a statistical fallacy, since the null hypothesis has already been either rejected or not rejected; there is no "power" to calculate!

Statistical Practice

The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis

John M. HOENIG and Dennis M. HEISEY

It is well known that statistical power calculations can be valuable in planning an experiment. There is also a large literature advocating that power calculations be made whenever one performs a statistical test of a hypothesis and one obtains a statistically nonsignificant result. Advocates of such post-experiment power calculations claim the calculations should be used to aid in the interpretation of the experimental results. This approach, which appears in various forms, is fundamentally flawed. We document that the problem is extensive and present arguments to demonstrate the flaw in the logic. culations as a matter of policy (Anon. 1995; Anon. 1998). We emphasize that these calculations are sought primarily with the thought that they are useful for explaining the observed data, rather than for the purpose of planning some future experiment. We even found statistical textbooks that illustrate the flawed approach (e.g., Rosner 1990; Winer, Brown, and Michels 1991; Zar 1996). Researchers need to be made aware of the shortcomings of power calculations as data analytic tools and taught more appropriate methodology.

It is important to understand the motivation of applied scientists for using power analysis to interpret hypothesis tests with nonsignificant results. The traditional, widely ac-

Tools for power analysis

Fmripower

What happened to the fmripower tool?

The fMRIPower tool hit old age and was starting to have quite a few issues. I have chosen to replace the tool with a set of instructions so you can carry out power analyses on your own. I will post that information soon! In a nutshell, all you really need to do is perform an ROI analysis, get your effect size and carry out a power analyis using that effect size. Of course, don't forget, you must use an a priori ROI. I realize it is super frustrating, but you cannot use the ROI that was active in the same data set from which you are running the power analysis.

Hopefully that's enough for now, but I will make a video and blog post with instructions soon.

NeuroPowerTools NeuroPower - NeuroDesign -

Welcome

During the design of an fMRI experiment, many parameters have to be decided prior to any data collection. Examples include: sample size, order of stimuli, timing of stimuli,... These parameters all have an effect on the outcome. A good design will optimise the balance between the power and the cost of the study. The results from a well planned design are more trustworthy and reproducible than any (pseudo-) random design.

This website is a collection of small toolboxes to help design an fMRI study. NeuroPower helps deciding on the sample size, while NeuroDesign finds optimal order and spacing of stimuli.

Everything happens online, so there's no need to download or install anything. Try it out now, or be sure to check back for our newest developments.

D	Data location							
	Either paste a link to the online nitti-file OK upload your stati	istical map.						
	https://neuropower.s3.amazonaws.com/maps/spmT_0001.nii							
	Currently: /maps/spmT_0001.nii							
	Change:							
	Choose File No file chosen							
м	lack location (ontional)							
IVI	lask location (optional)							
	Upload a full brain mask or a Region-of-Interest mask. If no	mask is se	lected, all non-null voxels are used.					
	Maskfile							
	Choose File No file chosen							
D	esign specifications							
	Are the data Z- or T-values?*							
	Т				~			
	What is the screening threshold, also known as the clusterforming threshold or the excursion threshold (either p-value or z-value units)?*							
	How many subjects does the group map represent?*							
	10							
	Is this a one-sample or a two-sample test?*							
	One-sample				~			
	At which alpha-level are the statistical tests carried out	?						
	0.05							
	Do you want to manually specify the smoothness or est	timate fro	m the data?					
	Note though that estimating smoothness on statistical maps leads to biases. It is preferable to manually specify the data.*							
	Manual							
	○ Estimate							
What is the smoothness of the data in mm?								
	10.0		10.0		10.0			
	What is the voxel size in mm?							
	3.0		3.0		3.0			

NeuroPowerTools NeuroP	ower - Neuro	Design -				
	OVERVIEW	RT PEAK TABLE	MODEL FIT	POWER CALCULATION	POWER TABLE	RESET
There is not enough power to estim	nate a threshold for BH					
Power	ble size or vice versa,	Hover over	the lines to	see detailed power	predictions	
Please fill out either the minimal po MCP* Random Field Theory Sample size Power .8 Submit parameters	ver or the sample size	1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.) 3 3 4 4 2 0 10	20	Power curves	Bonferroni Random Field Theory Uncorrected
To obtain a statistical power of 0.	0.8 this study would rea	uire a sample size of	41 subjects.			save svg

When evaluating a power analysis, make sure that the estimates seem to fall within reasonable bounds, and that the parameters were clearly defined

Questions?

Once we have estimated a model for each individual subject (1st-level analysis), we combine them into a 2nd-level analysis

In SPM: Usually focus on just the mean of the parameter estimate; variance is discarded at the group level

N.B.: The way that betas are calculated in the 1st-level is different than how they are estimated at the 2nd-level

The difference can be expressed as "Fixed-Effects" vs. "Random-Effects"

Combining both generates "Mixed-Effects"

www.nicolaromano.net

Fixed Effects

Summary: Fixed Effects applies <u>only</u> to the subjects you sampled

Random effects assumes that the subjects were randomly sampled from the population, and that you're trying to make an inference about the population (i.e., parameters)

Mixed effects combines the two

Question: To reduce overall variance, should we collect more samples, or more subjects?

Turner et al., 2018

Simplest model: 1-sample t-test

A parameter estimate (or contrast of parameter estimates, also called a contrast estimate) is submitted to a t-test

Is the average of the parameter (or contrast) estimates significantly different from zero?

However, this typically isn't very interesting

Since fMRI signal is arbitrary, it is more useful to contrast one condition to another

You can then run a one-sample t-test on this contrast (to be discussed in a little bit)

e.g., button presses

Very simple contrast (and useful to check whether your timings are correct!)

What is this?

How you specify the <u>contrast weights</u> depends on the order of the regressors

	SPM contrast manager	
	define contrast	
	Right-Left	contrast(s)
	€ t-contrast OF-contrast	contrast(s)
MRI 👻	contrast	
DICOM Imp	contrast weights vector -1 1	
	-11 x- (right padded with 1 zero)	
	Reset Cancel OK	parameter estimability
	name defined, contrast define	d ?

c = [-1 1]
In this example: Left was first, Right was second How would I specify the contrast of Left-Right?

c = [-1 1]

In a group-level context

One-sample:

In a group-level context

Two-sample:

What about a paired t-test?

Batch Editor							
Fi	le E	dit	View	SPM	Basic	0	r
D	2	H	▶				
	Module	List				Current Module: Factorial design specification	
	Factor	rial de	sign spec	cification	<-	Help on: Factorial design specification Directory Design . Paired t-test Pairs Pair	<-X
						Scans [1,2]	<-X
							<-X
						Scans [1,2]	<-X
							<-X
						Scans [1,2]	<-X
						. Grand mean scaling . ANCOVA Covariates Multiple covariates Masking . Threshold masking	No No
						Current Item: Scans [1,2]	
			_			Specify	
	Scans Select	[<mark>1,2]</mark> the p	air of ima	iges.			

What about an interaction?

If each subjects has two conditions (A,B) with two levels (1,2) then you can do the following contrast:

name	define contrast	
manne	Interaction Contrast	
type -		contrast(s)
	• t-contrast OF-contrast	0.5
contrast		
		0 0.2 0.4 0.6 0.8
contra	st	
vergn	.555 .5	

What if we perform a one-sample t-test on contrasts?

e.g., calculate A-B for each of 10 subjects, to create 10 contrasts

Is this valid?

Summary Statistics

The above is called a "summary statistics" approach

Valid if the intra-subject variabilities are relatively similar across subjects

For most studies, this assumption is true (Penny & Holmes, 2004)

Summary Statistics

Pros: Easy to implement, simplifies interactions

Cons: Assumptions may not be valid; check whether the variance and number of runs is similar for each subject

> Example: Using Summary Statistics to run a one-sample t-test on an interaction term

Batch Editor								
- ile Edit Vi	ew SPM	BasiclO	3					
) 🛩 🖪 🕨								
Module List Current Module: Factorial design specification								
Module List Factorial design	specification	Current Module: Factorial design specification Directory <-> Design Paired t-test Pair <- Pair <- Pair <- Pair <- Pair <- Pair <- Scans [1,2] <- Scans [1,2]<						

Batch Editor								
File	e '	Edit	View	SPM	Basicl	0	з	
D	2							
Module List Current Module: Factorial design specification								
	Facto	brial de	esign spec	cification	<-	Help on: Factorial design specification Directory <-X Design . One-sample t-test . Scans <-X Covariates		
						Multiple covariates Enter Contrast estimates here Masking . Threshold masking . None . Implicit Mask . Explicit Mask Global calculation . Omit Global normalisation . Overall grand mean scaling		
						No Normalisation None		
						Current Item: Scans		
						Specify		
	Scan Selec	s ct the ii	mages. T	hey must	t all have	the same image dimensions, orientation, voxel size etc.		

Also called "omnibus" tests

Tests whether one or more contrasts is significant

Question: Does this maximize Detection or Estimation?

Instead of a contrast vector, F-tests require contrast matrices

define contrast	
Effects of Interest F-Contrast	
	contrast(s)
• F-contrast	
1000	
0100 or eve(4)	
0001	
ns fa	
	define contrast Effects of Interest F-Contrast • t-contrast • F-contrast 1000 0100 0000

You can also specify multiple contrasts, e.g.:

Demonstration of Group-Level Analysis

Skin Nourishing Pain Relief Enriched with Aloe-vera

■ Advanced Micro-Foam[™]

BLUE-EMU[°]

America's Number One Emu Oil Formula The Blue-Emu® product line is the #1 selling over-the-counter emu oil brand in the United States. Our products, loved by both customers and Hall of Famers like Rusty Wallace and Johnny Bench, are made with soothing Aloe Vera and penetrating Emu Oil right here in the USA. Our products allow you to get back in the game without smelling like a locker room. Our product line includes Original Blue Emu® cream, Blue-Emu® Continuous Pain Relief Spray, Blue-Emu® Maximum Arthritis Pain Relief Cream, and Blue-Emu® Maximum Strength Lidocaine Numbing Pain Relief Cream. You can feel 100% confident in using our products to help soothe tired muscles and joints.

Now consider an fMRI dataset

Quick poll: How many voxels in a typical volume?

Depends on voxel size, but usually between 100k-300k

Balancing act between Type I and Type II errors

Legal Errors

		Actual Criminal		
		Yes Alternate Hypo	No Null Hypothesis	
Decision on	Punish (Criminal)	Good Decision	Convicting the Innocent	
Case Trial	Acquit (Innocent)	Acquit Guilty	Good Decision	

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

What can be done?

Bonferroni correction

FDR correction

Cluster correction

Simplest correction method to understand and calculate

Given an alpha level α and number of tests n, the corrected alpha level can be found by α/n

Example: α=0.05, n=10

α =0.005

Example: α=0.05, n=100,000

α =0.000005 (!)

This revised alpha is then used at each voxel in the analysis

Pros: Easy to understand, easy to use

Excellent for guarding against Type I error

Cons: Conservative, too severe for fMRI

Inflates the probability of Type II errors

Alternative: False Discovery Rate (FDR)

Bonferroni and other correction methods control for the Probability of observing a <u>single</u> false positive

FDR: Control the <u>fraction</u> of false positives

i.e.: You know there will a a certain percentage of false positives, but you can live with it

Alternative: False Discovery Rate (FDR)

- FDR
 - E (# of true null declared active / # voxels declared active)

	Declared active	Fail to Declare active	Total
Non-active	50	950	1000
Active	80	20	100
Total	130	970	1100

Noise

Signal+Noise

Control of Per Comparison Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7%

10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% Percentage of Activated Pixels that are False Positives

Bonferroni might be appropriate if each voxel were independent

But are they? Consider how the brain is designed

Functional image, unsmoothed

Functional image, smoothed

In SPM, cluster correction thresholds are calculated with Random Field Theory (RFT)

Accounts for the spatial smoothness of the data

Based on the <u>estimated</u> FWHMx (not the same as applied FWHMx!)

Cluster Correction

Example after 8mm smoothing kernel

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.34, p = 0.010 (1.000) Extent threshold: k = 30 voxels, p = 0.107 (0.999) Expected voxels per cluster, $\langle k \rangle = 11.965$ Expected number of clusters, $\langle c \rangle = 7.21$ FWEp: 4.869, FDRp: Inf, FWEc: 198, FDRc: 198 Degrees of freedom = [1.0, 278.0] FWHM = 10.5 10.5 10.2 mm mm mm; 3.5 3.5 3.4 {voxels} Volume: 1811403 = 67089 voxels = 1431.6 resels Voxel size: 3.0 3.0 3.0 mm mm mm; (resel = 41.85 voxels)

Cluster Correction

Statistics: *p*-values adjusted for search volume

set-leve	el	cluster-level			
р	С	$P_{\rm FWE-corr}$	$q_{\rm FDR-corr}$	k _e	P _{uncorr}
0.846	5	0.026	0.024	198	0.000
		0.537	0.175	85	0.011
		0.999 0.489	0.794 0.175	31 89	0.102 0.010
		0.105	0.050	146	0.002
Multiple Comparisons Correction: Summary

Most common method is cluster-wise thresholding

Cons: Loss of spatial specificity

As we will see tomorrow, you should use a Cluster-forming threshold of p=0.001 for most experiments

Non-parametric options seem to be getting more popular

Applying this to a dataset

Inc-Con - All Sessions

SPM*mip* [0, -1, -1]

SPM{T₂₇₈}

 $\begin{array}{l} \textbf{SPMresults:}, \texttt{/Flanker/sub-06/1stLevel} \\ \texttt{Height threshold T} = 2.339836 \ \{p{<}0.01 \ (unc.)\} \\ \texttt{Extent threshold k} = 30 \ voxels \end{array}$

Design matrix

Statistics: *p-values adjusted for search volume*

set-level			cluster-level								
p	с	P _{FWE-corr}	$q_{\rm FDR-corr}$	k _e	Puncorr	P _{FWE-corr}	<i>q</i> _{FDR-corr}	7	(Z _E)	Puncorr	
0.846	5	0.026	0.024	198	0.000	0.716	0.996	4.00	3.94	0.000	-39 -73 -22
						1.000	0.996	3.26	3.23	0.001	-42 -52 -19
						1.000	0.996	3.24	3.20	0.001	-27 -70 -1
		0.537	0.175	85	0.011	0.912	0.996	3.79	3.74	0.000	42 -40 -19
						1.000	0.996	3.12	3.09	0.001	48 -52 -2
		0.999	0.794	31	0.102	0.998	0.996	3.48	3.44	0.000	-66 -43 11
		0.489	0.175	89	0.010	1.000	0.996	3.26	3.22	0.001	24 -1 65
						1.000	0.996	2.91	2.89	0.002	33 2 50
						1.000	0.996	2.89	2.86	0.002	30 -7 50
		0.105	0.050	146	0.002	1.000	0.996	3.24	3.20	0.001	9 14 32
						1.000	0.996	3.11	3.08	0.001	0 29 20
						1.000	0.996	3.04	3.01	0.001	-3 20 71

Applying this to a dataset

Set-level: Probability of finding that many clusters

Cluster-level: Probability of finding a cluster of a given size

Peak-level: Probability of a statistic that size in that voxel

Applying this to a dataset

Statistics: *p*-values adjusted for search volume

set-level			cluster-level								
p	С	$P_{\rm FWE-corr}$	9 _{FDR-corr}	k _E	P _{uncorr}	$P_{\rm FWE-corr}$	9 _{FDR-corr}	7	(Z _E)	P _{uncorr}	
0.846	5	0.026	0.024	198	0.000	0.716	0.996	4.00	3.94	0.000	-39 -73 -22
						1.000	0.996	3.26	3.23	0.001	-42 -52 -19
						1.000	0.996	3.24	3.20	0.001	-27 -70 -16
		0.537	0.175	85	0.011	0.912	0.996	3.79	3.74	0.000	42 -40 -19
						1.000	0.996	3.12	3.09	0.001	48 -52 -25
		0.999	0.794	31	0.102	0.998	0.996	3.48	3.44	0.000	-66 -43 11
		0.489	0.175	89	0.010	1.000	0.996	3.26	3.22	0.001	24 -1 65
						1.000	0.996	2.91	2.89	0.002	33 2 50
						1.000	0.996	2.89	2.86	0.002	30 -7 50
		0.105	0.050	146	0.002	1.000	0.996	3.24	3.20	0.001	9 14 32
						1.000	0.996	3.11	3.08	0.001	0 29 26
						1.000	0.996	3.04	3.01	0.001	-3 20 71

Demonstration

Other Statistical Scenarios

Once you calculate a contrast, are you done?

Consider this: My brother and I both play basketball. If I tell you that I am slightly better than he is, does that mean:

We are both really good, but I'm just a little better?

I'm a little above average, and he's a little below average?

Maybe we're both terrible, and I'm just a little better than he is

Double Dissociations

Condition A is significant in region A but not region B, and condition B is significant is region B but not region A

Remember to run a paired t-test within each region, and also a Region x Condition interaction

Double Dissociations

Nieuwenhuis et al., 2011

Double Dissociations

Jahn et al., 2016

Triple Dissociations (!)

De la Vega et al., 2016

Preview: ROI Analysis

In the examples just shown, the data was extracted from Regions of Interest (ROIs)

That is, subsets of voxels that we are interested in

				WFU PickAtlas Tool			
HUMAN ATL	.AS->TD brodmanı	n areas+		BASIC ADVANCED		WORKING REGION	N1
 brodmann area 1 brodmann area 3 brodmann area 3 brodmann area 4 brodmann area 5 brodmann area 5 brodmann area 7 brodmann area 7 brodmann area 7 brodmann area 7 brodmann area 10 brodmann area 11 brodmann area 12 brodmann area 13 brodmann area 15 brodmann area 15 brodmann area 15 brodmann area 16 brodmann area 18 brodmann area 18 brodmann area 18 brodmann area 18 brodmann area 20 brodmann area 21 brodmann area 22 brodmann area 23 brodmann area 23 brodmann area 26 brodmann area 26 brodmann area 27 brodmann area 30 brodmann area 31 brodmann area 31 brodmann area 31 brodmann area 31 brodmann area 33 brodmann area 35 brodmann area 35 brodmann area 37 brodmann area 37 brodmann area 38 brodmann area 37 brodmann area 40				ADD -> MOVE ALL ->> <- REMOVE SELECTED <<- REMOVE ALL 2D 3D DILATE: 1 I IIII Flip Lock L/R U/D Left Left + Right Display: Neurologic 49 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	brodmann	area 32	
brodmann area 42 brodmann area 43 brodmann area 44 brodmann area 45 brodmann area 46 brodmann area 47 Amygdala Anterior Commissure Caudate Body Caudate Head		Atlas Information		ANALYSIS RESULTS Write Independent Regions SAVE MASK DONE CANCEL			
CUBE	46	64	37	GO ATLAS		SUBREGION	VALUE
MNI	0	0	0	GO TD brodmann areas+	\$	NA	1000

1: dACC S	phere
-----------	-------

Label:	dACC_Spher	е	
Centre of	mass:	0	20 40
Volume (n	nm):	(648.00
Max/min 2	X(mm):	-4	4
Max/min`	Y(mm):	16	5 24
Max/min	7(mm).	36	5 44

Questions?

Create an ideal experimental design, before collecting data

For AFNI users: Similar to using the –nodata option in 3dDeconvolve, calculating correlations

Parameters to change: ISI, number of trials, and contrasts

Lab Preview

- ts = output.X0;
- % get the raw timeseries from 'output'
- = output.TR; tr
- irf = spm_hrf(tr); % create the impulse response function
- cts = conv(ts, irf); % convolve the timeseries with the IRF

% do the same for the TR

cts = cts(1:length(ts)); % ensure that the long tail of the hemodynamic response hasn't lengthened our image timeseries

Lab Preview

Using OptimizeX to specify which contrasts you are interested in

Contrast Specification		
Vector for Contrast 1:	10-10	
Weight for Contrast 1:	1	
Vector for Contrast 2:	010-1	
Weight for Contrast 2:	2	
Cancel	OK	

Create several design matrices, calculate VIF

We will provide the code for this

Lab Preview

Exploring the SPM.mat file

details on experiment:

SPM.xY.RT - TR length (RT ="repeat time")
SPM.xY.P - matrix of file names
SPM.xY.VY - # of runs x 1 struct array of mapped image volumes (.img file info)
SPM.modality - the data you're using (PET, FMRI, EEG)
SPM.stats.[modality].UFp - critical F-threshold for selecting voxels over which the non-sphericity is estimated (if required) [default: 0.001]
SPM. stats.maxres - maximum number of residual images for smoothness estimation
SPM. stats.maxmem - maximum amount of data processed at a time (in bytes)
SPM.SPMid - version of SPM used
SPM.swd - directory for SPM.mat and img files. default is pwd

basis function:

SPM.xBF.name - name of basis function SPM.xBF.length - length in seconds of basis SPM.xBF.order - order of basis set SPM.xBF.T - number of subdivisions of TR SPM.xBF.T0 - first time bin (see slice timing) SPM.xBF.UNITS - options: 'scans'|'secs' for onsets SPM.xBF.Volterra - order of convolution SPM.xBF.dt - length of time bin in seconds SPM.xBF.bf - basis set matrix