MRI Physics:

Magnetic Field Gradients

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

Pulse Sequences

Contrast (Spin Preparation)

What kind of contrast does the image have? What is the TR, TE, Flip Angle, etc.? Gradient echo/spin echo/etc.

Localization (Image Acquisition)

How is the image acquired? How is "k-space" sampled? Spatial Resolution? Field-of-View?

Goals of Image Acquisition

- Acquire 2D (or 3D) Fourier data
- Acquire samples finely enough to prevent aliasing (FOV)
- Acquire enough samples for the desired spatial resolution (Δx)
- Acquire images with the right contrast
- Do it fast as possible
- Do it without distortions and other artifacts

Magnetic Fields in MRI

 B_0 – The main magnetic field Always on (0.5-7 T) Magnetizes the object to be imaged After excitation, the magnetization precesses around B_0 at $\omega_0 = \gamma B_0$

B₁ – The rotating RF magnetic field
Tips magnetization into transverse plane
Used for "excitation"
On for brief periods, then off

Magnetic Fields in MRI

The last magnetic field to be used in MRI are the gradient fields 3 of them: G_x , G_y , G_z Used primarily for spatial localization Make the magnetic field different in different parts of the body, e.g. for the x-gradient:

 $B(x) = B_0 + G_x x$

Magnetic Field Gradients

x-gradient (G_x)

z-gradient (G_z)

y-gradient (G_y)

Precession

Gyromagnetic Ratio

 $B_0=1.5T \rightarrow \omega = 64 \text{ MHz} \rightarrow 64 \text{ million rounds/sec}$

 $B_0=3.0T \rightarrow \omega = 128 \text{ MHz} \rightarrow 128 \text{ million rounds/sec}$

Stronger Magnetic Field = Faster precession

Precession Frequency can be altered with magnetic field gradients

 $B(x) = B_0 + G_x x$ $\omega = \gamma \cdot B$ $\omega(x) = \gamma B(x) = \gamma (B_0 + G_x x)$

Precession Frequency can be altered with magnetic field gradients

$$B(x) = B_0 + G_x \cdot x$$
$$(x) = \gamma B(x) = \gamma (B_0 + G_x \cdot x)$$

The Challenge

The Challenge

Signal Length → Freq Resolution

Signal Length → Freq Resolution

MRI Physics:

Frequency and Phase Encoding

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

Spatial Localization

Spatial Localization

Frequency Encoding

Gradients alter frequency and phase of spins

Frequency \rightarrow how fast spins precess

Phase \rightarrow relative orientation with respect to one another

Phase Encoding

Phase Encoding

Phase Encoding

Phase Encoding→Just like Freq Encoding

Spins in Constant Magnetic Field

Frequency Encoding

Signal Equation and Fourier MRI

$$s(x,y,t) = \rho(x,y) \cdot e^{-i\omega t} = \rho(x,y) \cdot e^{-i\gamma B_0 t}$$

$$s(x,y,t,\tau) = \rho(x,y) \cdot e^{-i\gamma(B_0 + G_x)x \cdot t} \cdot e^{-i\gamma(B_0 + G_y)y \cdot \tau}$$

$$S(t,\tau) = \iint S(x,y,t,\tau) dx dy$$

$$= \iint \rho(x,y) \cdot e^{-i\gamma(B_0 + G_x)x \cdot t} \cdot e^{-i\gamma(B_0 + G_y)y \cdot \tau} dx dy$$

$$k_x = \gamma(B_0 + G_x)t$$

$$k_y = \gamma(B_0 + G_y)\tau$$

$$S(k_x,k_y) = \iint \rho(x,y) \cdot e^{-ik_x \cdot x} \cdot e^{-ik_y \cdot y} dx dy$$

Traversal of k-Space with Gradients

Traversal of K-Space with Gradients

Traversal of K-Space with Gradients

Fundamental Imaging Time

$$Time = T_R \cdot N_{PE} \cdot NA$$

- T_R : Amount of time needed to acquire one line (3 ms 5 sec)
- N_{PE} : Number of lines to acquire (32 512)
- NA: Averages of each line (1∞)

Summary

- Magnetic field gradients used to link precession frequency to position → spatial encoding
- Frequency encoding: gradient on during data acquisition
- Phase encoding: gradient on to accumulate phase, then gradient off during data acquisition
- Application of gradients over time dictates k-space trajectory
- The need for multiple lines of k-space data leads to long acquisition times

