MRI Physics:

Resolution, FoV, Spatial Encoding

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

Traversal of k-Space with Gradients

Traversal of K-Space with Gradients

k-space Properties

Full K-space

Center Only

Image Contrast

Outside Only

Image Edges

k-space Properties

k-space Properties

Lower Resolution

Full FoV **Full Resolution**

Smaller FoV **Full Resolution**

$K_{max} \rightarrow Signal Length \rightarrow Spatial Resolution$

https://www.youtube.com/watch?v=DpeLjY5NGu4

3:26

https://www.youtube.com/watch?v=jWIcVP6GRfw

https://www.youtube.com/watch?v=Nyf79SI0U9Q

$\Delta k \rightarrow \text{Line Spacing} \rightarrow \text{Field-of-View}$

I wo locations indistinguishable

Aliasing Example

Conventional (Spin-Warp) Imaging

One Line at a Time

128x128 FLASH/SPGR TR/TE/flip = 50ms/30ms/30° 6.4 sec for single slice for fMRI

Conventional (Spin-Warp) Imaging

One Line at a Time

- Typically matrix sizes for fMRI
 - 128x64, 128x128
- Acquisition rates
 - 3-10 sec/image
 - 1-4 slices
- Usually best for structural imaging

Fundamental Imaging Time

- T_R: Amount of time needed to acquire one line (3 ms 5 sec)
- N_{PE}: Number of lines to acquire (32 512)
- NA: Averages of each line (1∞)

SINGLE SHOT IMAGING

T2 Relaxation

Additional RF pulses to undo T2* factors \Rightarrow Multi Spin Echo (MSE)

)

Echo Planar Imaging (EPI)

Single-shot EPI, TE = 40 ms, TR = 2 s, 20 slices

Echo Planar Imaging (EPI)

Zig-Zag Pattern

- Single-shot acquisition
- Typically matrix sizes for fMRI

 64x64, 96x96
 128x128 interleaved
- Acquisition rates
 TR = 1-2 sec
 - 20-30 slices
- Suffers some artifacts
 Distortion, ghosts

EPI Geometric Distortions

Jezzard and Balaban, MRM 34:65-73 1995

Courtesy of P. Jezzard

EPI Nyquist Ghost

Courtesy of P. Jezzard

2D Echo Planar Imaging (EPI) → "Multi-Shot"

Multi - Shot EPI: Increase #-shots to reduce geometric / signal distortions, but scans are longer

Notra Ctarstiastial marginging

Spiral Imaging

Spiral Pattern

Single-shot spiral, TE = 25 ms, TR = 2 s, 32 slices

Spiral Imaging

Spiral Pattern

- Single-shot acquisition
- Typically matrix sizes for fMRI - 64x64, 96x96
 - 128x128 interleaved
- Acquisition rates
 TR = 1-2 sec
 - 20-40 slices
- Suffers some artifacts
 Blurring

Spiral Off-Resonance Distortions

Courtesy of P. Jezzard

Single-shot Imaging

- Single-shot imaging is an extremely rapid and useful class of imaging methods for fMRI
- It does, however, require high performance hardware. Why?
 - In spin-warp, we acquire a small piece of data for an image with each RF pulse
 - In EPI and spiral, we try to acquire all of the data for an image with a single RF pulse

Single-shot Imaging

- Need powerful gradient amps
- Limitations:
 - Peripheral nerve stimulation
 - Acoustic noise
 - Increased image noise
 - Heating and power consumption in gradient subsystem
- Other issues:
 - Limited spatial resolution
 - Image distortions
 - Some limits on available contrast

Goals of Image Acquisition

- Acquire 2D (or 3D) Fourier data
- Acquire samples finely enough to prevent aliasing (FOV)
- Acquire enough samples for the desired spatial resolution (Dx)
- Acquire images with the right contrast
- Do it fast as possible
- Do it without distortions and other artifacts

MRI Physics:

Encoding the 3rd Dimension

Nicole Seiberlich Associate Professor, Radiology Co-Director of MIITT

The 3rd Dimension

- We've talked about 1D and 2D imaging, but the head is 3D!!
- Solution #1 3D Imaging
 - Acquire data in a 3D Fourier domain
 - Image is created by using the 3D Fourier transform
- Solution #2 Slice Selection
 - Excite a 2D plane and do 2D imaging
 - Most common approach

Traversal of k-Space with Gradients

Fundamental Imaging Time

$$Time = T_R \cdot N_y \cdot NA$$
$$Time = T_R \cdot N_y \cdot N_z \cdot NA$$

- T_R : Amount of time needed to acquire one line (3 ms 5 sec)
- N_y : Number of lines to acquire (32 512)
- NA: Averages of each line (1∞)
- 2D Scan Time ~ 3 ms x 256 lines x 1 average = 768 ms
- 3D Scan Time ~ 3 ms x 256 lines x 256 lines x 1 average = **196 s**

Fundamental Imaging Time

$$Time = T_R \cdot N_y \cdot NA$$
$$Time = T_R \cdot N_y \cdot N_z \cdot NA$$

- Long Scan!!
- No chance to follow rapid temporal dynamics (fMRI)
- Motion artifacts

Slice Selection

- The 3rd dimension is localized during excitation
 "Slice selective excitation"
- Makes use of the resonance phenomenon
 - Only "on-resonant" spins are excited

Pulse Sequence

Fundamental Imaging Time

$$Time = T_R \cdot N_y \cdot NA$$
$$Time = T_R \cdot N_y \cdot NA \cdot Slices$$

- Shorter scans / slice
- Lots of slices = long scan time

Interleaved Multi-Slice 2D Spin Echo MRI

Longitudinal Magnetization of Slice 1

TR

Summary

- Acquisition of all of k-space is what causes scans to be long
- Spin Warp / Spin Echo sequences can be long
- Turbo Spin Echo used to collect multiple echoes after one excitation → T2 Weighted
- Echo Planar Imaging used to collect multiple echoes after one excitation → T2* Weighted
- MRI data can be collected in 3D
- Most MRI scans are 2D using slice selection
- Interleaved slices can be collected to shorten scan time

