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Magnetic Fields in MRI
• B0 – The main magnetic field.

– Always on (0.5-7 T)
– Magnetizes the object to be imaged
– After excitation, the magnetization 

precesses around B0 at ω0 = γB0

• B1 – The rotating RF magnetic field.
– Tips magnetization into transverse plane
– Performs “excitation”
– On for brief periods, then off
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Gradient Fields
• The last magnetic field to be used in 

MRI are the gradient fields
– 3 of them: Gx, Gy, Gz

– These are for localization
– Make the magnetic field different in different 

parts of the body, e.g. for the x-gradient:

                     B(x) = B0 + G.x 

– Observe the field points in the same 
direction as B0 so it adds to B0.
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Imaging Basics
• To understand 2D and 3D localization, 

we will start at the beginning with one-
dimensional localization.
– Here we “image” in 1D - the x-direction.

(e.g. the L-R direction)

• We start with the simplest form of 
localization called “frequency encoding.”
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1D Localization
• We acquire data while the x-gradient (Gx) is 

turned on and has a constant strength.

• Recall that a gradient makes the strength of the 
magnetic field vary in a particular direction.

• In this case, having a positive x-gradient implies 
that the farther we move along in the x-direction 
(e.g. the farther right we move) the magnetic 
field will increase. 

B(x) = B0 + G.x
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Frequency Encoding
• A fundamental property of nuclear spins 

says that the frequency at which they 
precess (or emit signals) is proportional 
to the magnetic field strength:

• This says that precession frequency 
now increases as we move along the x-
direction (e.g. as we move rightwards).

   ω(x) = γ (B0 + G.x). 

ω = γB          - The Larmor Relationship
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Frequency Encoding
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Spins in a Magnetic Field
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The Fourier Transform

• The last part of this story is the Fourier transform.

• A function of time is made up of a sum of sines and 
cosines of different frequencies.

• We can break it down into those frequency 
components

Recall that ei2πft =  cos(2πft) + i sin(2πft)
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Fourier Transforms
• In short, the Fourier transform is the 

mathematical operator (computer program) 
that breaks down each MR signal into its 
frequency components.

• If we plot the strength of each frequency, it will 
form a representation (or image) of the object 
in one-dimension.



Noll

Fourier Transforms
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Fourier Representation of Images

• Decomposition of images into frequency 
components, e.g. into sines and 
cosines.

1D Object                             Fourier Data
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

0th Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

1st Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

2nd Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

3rd Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

5th Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

20th Frequency Component
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1D Fourier Transform

New Components                    Cumulative Sum 
                                                       of Components

63rd Frequency Component
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Fourier Acquisition
• In MRI, we are acquiring Fourier 

components
– Then…we take the FT of the acquired data 

to create an image

• The more Fourier components we 
acquire, the better the representation



Noll

2D Imaging - 2D Fourier Transform

2D
FFT

Acquired Data Resultant Image

In MRI, we are acquiring Fourier components 
  – works in two dimensions as well
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There was a pretty big leap here…
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Spatial Frequencies in 2D
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Resolution and Field of View

• Field of view is determined by spacing of samples: FOV = 1 / ∆k

• Resolution is determined by size of the area acquired:  ∆x = 1 / W

W
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∆ky
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Courtesy Luis Hernandez
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Aliasing

Courtesy Luis Hernandez

Sample 
Locations

Notice how two different frequencies have the same samples?
(won’t have this problem if you sample more finely)
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Aliasing

K space

Courtesy Luis Hernandez
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Aliasing

K space

If you don’t sample finely enough, higher frequencies look like 
(take on the alias of a) lower frequencies

(Collected only every other line)

Courtesy Luis Hernandez
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Resolution and Field of View

kx

kyResolution is determined by 
size of the area acquired:

∆x = 1 / W

Field of view is determined by 
spacing of samples:

FOV = 1 / ∆k W

∆k
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Goals of Image Acquisition
• Acquire 2D (or 3D) Fourier data
• Acquire samples finely enough to 

prevent aliasing (FOV)
• Acquire enough samples for the desired 

spatial resolution (∆x)
• Acquire images with the right contrast
• Do it fast as possible
• Do it without distortions and other 

artifacts
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Some Common Imaging Methods

• Conventional (spin-warp) Imaging
• Echo Planar Imaging (EPI)
• Spiral Imaging
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Conventional (Spin-Warp) Imaging

kx

ky

128x128 FLASH/SPGR
TR/TE/flip = 50ms/30ms/30º
0.2 slices per sec, single slice
     for fMRI

One Line at a Time
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Conventional (Spin-Warp) Imaging
• Known as:

– GRE, FLASH, SPGR
• Typically matrix 

sizes for fMRI
– 128x64, 128x128

• Acquisition rates
– 3-10 sec/image
– 1-4 slices

• Usually best for 
structural imaging

kx

ky

One Line at a Time
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Echo Planar Imaging (EPI)

kx

ky

Single-shot EPI, TE = 40 ms, 
TR = 2 s, 20 slices

Zig-Zag Pattern
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Echo Planar Imaging (EPI)

kx

ky

Zig-Zag Pattern

• Single-shot acquisition
• Typically matrix sizes for 

fMRI
– 64x64, 96x96 
– 128x128 interleaved

• Acquisition rates
– TR = 1-2 sec
– 20-30 slices

• Suffers some artifacts
– Distortion, ghosts
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EPI Geometric Distortions

Jezzard and Balaban, MRM  34:65-73 1995

field maphigh res image

warped epi image unwarped epi image

Courtesy of P. Jezzard
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EPI Nyquist Ghost

Courtesy of P. Jezzard
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Spiral Imaging

kx

ky

Single-shot spiral, TE = 25 ms, 
TR = 2 s, 32 slices

Spiral Pattern
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Spiral Imaging

kx

ky

Spiral Pattern

• Single-shot acquisition
• Typically matrix sizes for 

fMRI
– 64x64, 96x96 
– 128x128 interleaved

• Acquisition rates
– TR = 1-2 sec
– 20-40 slices

• Suffers some artifacts
– Blurring
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Spiral Off-Resonance Distortions

perfect shim poor shim
Courtesy of P. Jezzard
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Single-shot Imaging
• Single-shot imaging is an extremely rapid and 

useful class of imaging methods.

• It does, however, require high performance 
hardware.  Why?
– In spin-warp, we acquire a small piece of data for an 

image with each RF pulse.

– However in EPI and spiral, we try to acquire all of the 
data for an image with a single RF pulse.
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Single-shot Imaging
• Need powerful gradient amps
• Limitations:

– Peripheral nerve stimulation
– Acoustic noise
– Increased image noise
– Heating and power consumption in gradient 

subsystem
• Other issues:

– Limited spatial resolution
– Image distortions
– Some limits on available contrast
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Pulse Sequences
(description of image acquisition)

• Two Major Aspects
– Contrast (Spin Preparation)

What kind of contrast does the image have?
What is the TR, TE, Flip Angle, etc.?
Gradient echo/spin echo/etc.

– Localization (Image Acquisition)

How is the image acquired?  
How is “k-space” sampled?
Spatial Resolution?
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Pulse Sequences
• Spin Preparation (contrast)

– Spin Echo (T1, T2, Density)
– Gradient Echo
– Inversion Recovery
– Diffusion
– Velocity Encoding

• Image Acquisition Method (localization, 
k-space sampling)
– Spin-Warp
– EPI, Spiral
– RARE, FSE, etc.
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Pulse sequences

There are many, 
many ways to 
excite spins and 
sample k-space
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Localization vs. Contrast
• In many cases, the localization method 

and the contrast weighting are 
independent.

– For example, the spin-warp method can be 
used for T1, T2, or nearly any other kind of 
contrast. 

– T2-weighted images can be acquired with 
spin-warp, EPI, spiral and RARE pulse 
sequences.
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Localization vs. Contrast
• But, some localization methods are 

better than others at some kinds of 
contrast.

– For example, RARE (FSE) is not very good 
at generating short-TR, T1-weighted 
images. 

• In general, however, we can think about 
localization methods and contrast 
separately.
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The 3rd Dimension
• We’ve talked about 1D and 2D imaging, but 

the head is 3D.
• Solution #1 – 3D Imaging

– Acquire data in a 3D Fourier domain
– Image is created by using the 3D Fourier transform
– E.g. 3D spin-warp pulse sequence

• Solution #2 – Slice Selection
– Excite a 2D plane and do 2D imaging
– Most common approach
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Slice Selection
• The 3rd dimension is localized during 

excitation
– “Slice selective excitation”

• Makes use of the resonance phenomenon
– Only “on-resonant” spins are excited
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Slice Selection

Slice 1 Slice 2 Slice 3

Gz

B(z)

z

With the z-gradient on, slices at 
different z positions have a 
different magnetic fields and 
therefore different frequencies :

   ω(z1)  <  ω(z2)  <  ω(z3) 
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Slice Selection

Slice 1 Slice 2 Slice 3

Gz

B(z)

z

Slice 1 is excited by setting the 
excitation frequency to ω(z1) 

Slice 2 is excited by setting the 
excitation frequency to ω(z2) 

Interesting note:  Exciting a slice 
does not perturb relaxation 
processes that are occurring in the 
other slices.
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Slice Thickness
• Slice thickness is adjusted by changing 

the “bandwidth” of the RF pulse
• Bandwidth ~ 1 / (duration of RF pulse)

– E.g., for duration = 1 ms, BW ~ 1 kHz

γGz

ω(z)

z

∆ω

∆z
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Multi-Slice Imaging
• Since T1’s are long, we often would like 

to have long TR’s (500-4000 ms)

• While one slice is recovering (T1), we 
can image other slices without 
perturbing the recovery process
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Multi-Slice Imaging
RF

pulses

Data
acquisition

RF
pulses

Data
acquisition

RF
pulses

Data
acquisition

Slice 1

Slice 2

Slice 3

ω(z1)

ω(z2)

ω(z3)

TR
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Advanced Image Acquisition Topics

• T2 vs. T2*
– Spin-echo vs. Gradient-echo

• Parallel Imaging 
(GRAPPA/SENSE/iPAT/ASSET)

• Simultaneous Multi-Slice Imaging
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What is T2* (or R2*)?

• T2* has two parts:
– Inter-molecular interactions leading to dephasing, 

a.k.a. T2 decay (note: the rate 𝑅𝑅𝑅 = 1/𝑇𝑇𝑅)
– Macroscopic or mesoscopic static magnetic field 

inhomogeneity leading to dephasing, a.k.a. T2’ 

1
𝑇𝑇𝑅∗

=
1
𝑇𝑇𝑅′

+
1
𝑇𝑇𝑅

 − 𝑜𝑜𝑜𝑜 −  𝑅𝑅𝑅∗ = 𝑅𝑅𝑅′ + 𝑅𝑅𝑅

• Pulse sequence issues:
– Spin echoes are sensitive to T2
– Gradient echoes are sensitive to T2*
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Spin-Echo Pulse Sequence

RF
pulses

Data
acquisition

90o 180o

180o pulse
“pancake flipper”

Gradient
Echo

Spin
Echo
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Parallel Imaging
• Basic idea:  combining reduced Fourier 

encoding with coarse coil localization to 
produce artifact free images
– Artifacts (aliasing) from reduced Fourier encoding 

are spatially distinct in manner similar to 
separation of the coil sensitivity patterns

• Goes by many names.  Most common:
• SENSE (SENSitivity Encoding) (also ASSET)

– Pruessmann, et al. Magn. Reson. Med. 1999; 42: 952-962. 
• GRAPPA (GeneRalized Autocalibrating Partially Parallel 

Acquisitions) (also iPAT, ARC)
– Griswold, et al. Magn. Reson. Med. 2002; 47: 1202-10. 
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Localization in MR by Coil Sensitivity
• Coarse localization from parallel receiver 

channels attached to an array coil
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SENSE Imaging – An Example

Full Fourier Encoding
Volume Coil

Pixel A

Pixel B

Full Fourier Encoding
Array Coil

S1AA

S1BB

S3AA

S3BB

S2AA

S2BB

S4AA

S4BB

Unknown Pixel
Values A & B

Known Sensitivity
Info S1A, S1B,…
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SENSE Imaging – An Example

Reduced Fourier – Speed-Up R=2
Array Coil

S1AA+S1BB S2AA+S2BB

S3AA+S3BB S4AA+S4BB

Reduced Fourier – Speed-Up R=2
Volume Coil

A+B

Insufficient Data
To Determine A & B

Extra Coil 
Measurements

Allow Determination
 of A & B
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SENSE Imaging – An Example
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Parallel Imaging
• In the lecturer’s opinion, parallel imaging 

is very useful for structural imaging, but 
only moderately useful for fMRI.

• Pros:
– Higher spatial resolution
– Some reduction of distortions

• Cons:
– But lower SNR
– Minimal increase in temporal resolution (in 

fMRI)



Noll

Simultaneous Multi-Slice Imaging
• Basic Idea:  Use coil localization 

information to separate two or more 
overlapping slices 

• Similar to parallel imaging
• References:

– Larkman, et al. J. Magn. Reson. Imaging 2001; 13: 
313-317. 

– Moeller, et al. Magn. Reson. Med. 2009; 63:1144–
1153. 

– Setsompop, et al. Magn. Reson. Med. 2012; 
67:1210–1224. 
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Simultaneous Multi-Slice Imaging 
– An Example

2 Slices
Volume Coil

Slice A

Slice B

2 Slices
Array Coil

S1AA

S1BB

S3AA

S3BB

S2AA

S2BB

S4AA

S4BB

Unknown 
Slices A & B

Known Sensitivity
Info S1A, S1B,…
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Simultaneous Multi-Slice Imaging 
– An Example

• Same basis 
equations as 
parallel imaging

• Operates on slices 
that overlap instead 
of aliases of a 
single slice

• Can be combined 
with parallel 
imaging
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• Really quite useful for single shot 
imaging applications like fMRI and 
diffusion tensor imaging (DTI)

• Pros:
– Increase in temporal resolution (2x-8x!)
– Allows for thinner slices
– Faster acquisition reduced effects of physio 

noise
• Cons:

– Small increase in noise, artifact from 
imperfect decoding of slices

Simultaneous Multi-Slice Imaging
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