MRI Physics II: Gradients, Imaging

Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

## **Magnetic Fields in MRI**

- $B_0$  The main magnetic field.
  - Always on (0.5-7 T)
  - Magnetizes the object to be imaged
  - After excitation, the magnetization precesses around  $B_0$  at  $\omega_0 = \gamma B_0$
- $B_1$  The rotating RF magnetic field.
  - Tips magnetization into transverse plane
  - Performs "excitation"
  - On for brief periods, then off



## **Gradient Fields**

- The last magnetic field to be used in MRI are the gradient fields
  - -3 of them:  $G_x$ ,  $G_y$ ,  $G_z$
  - These are for localization
  - Make the magnetic field different in different parts of the body, e.g. for the x-gradient:

 $\mathsf{B}(x) = \mathsf{B}_0 + \mathsf{G} \cdot x$ 

- Observe the field points in the same direction as  $B_0$  so it adds to  $B_0$ .





## **Imaging Basics**

 To understand 2D and 3D localization, we will start at the beginning with onedimensional localization.

Here we "image" in 1D - the x-direction.
 (e.g. the L-R direction)

 We start with the simplest form of localization called "frequency encoding."



## **1D Localization**

- We acquire data while the x-gradient (G<sub>x</sub>) is turned on and has a constant strength.
- Recall that a gradient makes the strength of the magnetic field vary in a particular direction.
- In this case, having a positive x-gradient implies that the farther we move along in the x-direction (e.g. the farther right we move) the magnetic field will increase.

$$\mathbf{B}(x) = \mathbf{B}_0 + \mathbf{G} \cdot x$$



## **Frequency Encoding**

 A fundamental property of nuclear spins says that the frequency at which they precess (or emit signals) is proportional to the magnetic field strength:

$$\omega=\gamma B$$

- The Larmor Relationship

 This says that precession frequency now increases as we move along the xdirection (e.g. as we move rightwards).

$$\omega(x) = \gamma (\mathsf{B}_0 + \mathsf{G} \cdot x).$$



## **Frequency Encoding**





## Spins in a Magnetic Field



## **The Fourier Transform**

- The last part of this story is the Fourier transform.
- A function of time is made up of a sum of sines and cosines of different frequencies.
- We can break it down into those frequency components

The Fourier Transform .com  $\mathcal{F}\left\{g(t)\right\} = G(f) = \int_{-\infty}^{\infty} g(t)e^{-i2\pi ft}dt$   $\mathcal{F}^{-1}\left\{G(f)\right\} = g(t) = \int_{-\infty}^{\infty} G(f)e^{i2\pi ft}df$ 



Recall that  $e^{i2\pi ft} = \cos(2\pi ft) + i\sin(2\pi ft)$ 



- In short, the Fourier transform is the mathematical operator (computer program) that breaks down each MR signal into its frequency components.
- If we plot the strength of each frequency, it will form a representation (or image) of the object in one-dimension.







#### Fourier Representation of Images

 Decomposition of images into frequency components, e.g. into sines and cosines.





1D Object

Fourier Data



0<sup>th</sup> Frequency Component





#### New Components



#### 1<sup>st</sup> Frequency Component



#### New Components



#### 2<sup>nd</sup> Frequency Component



#### New Components

Cumulative Sum of Components



M

#### 3<sup>rd</sup> Frequency Component



#### New Components



#### 5<sup>th</sup> Frequency Component





#### New Components



#### 20<sup>th</sup> Frequency Component



#### New Components



63<sup>rd</sup> Frequency Component

50



#### New Components



## **Fourier Acquisition**

- In MRI, we are acquiring Fourier components
  - Then...we take the FT of the acquired data to create an image
- The more Fourier components we acquire, the better the representation



## 2D Imaging - 2D Fourier Transform In MRI, we are acquiring Fourier components – works in two dimensions as well



#### **Resultant Image**





### There was a pretty big leap here...







Low Res (contrast)





- Field of view is determined by spacing of samples: FOV =  $1 / \Delta k$
- Resolution is determined by size of the area acquired:  $\Delta x = 1 / W$



## Aliasing



Notice how two different frequencies have the same samples? (won't have this problem if you sample more finely)

Courtesy Luis Hernandez



## Aliasing



Original image







## Aliasing





(Collected only every other line)

If you don't sample **finely enough**, higher frequencies look like (take on the alias of a) lower frequencies

Courtesy Luis Hernandez



### **Resolution and Field of View**

Resolution is determined by size of the area acquired:

 $\Delta x = 1 / W$ 

Field of view is determined by spacing of samples:

 $FOV = 1 / \Delta k$ 





## **Goals of Image Acquisition**

- Acquire 2D (or 3D) Fourier data
- Acquire samples finely enough to prevent aliasing (FOV)
- Acquire enough samples for the desired spatial resolution (∆x)
- Acquire images with the right contrast
- Do it fast as possible
- Do it without distortions and other artifacts



### Some Common Imaging Methods

- Conventional (spin-warp) Imaging
- Echo Planar Imaging (EPI)
- Spiral Imaging

### **Conventional (Spin-Warp) Imaging**



#### One Line at a Time



128x128 FLASH/SPGR TR/TE/flip = 50ms/30ms/30° 0.2 slices per sec, single slice for fMRI





### **Conventional (Spin-Warp) Imaging**



#### One Line at a Time

- Known as:
  - GRE, FLASH, SPGR
- Typically matrix sizes for fMRI
  - 128x64, 128x128
- Acquisition rates
  - 3-10 sec/image
  - 1-4 slices
- Usually best for structural imaging



## Echo Planar Imaging (EPI)



Single-shot EPI, TE = 40 ms, TR = 2 s, 20 slices



## Echo Planar Imaging (EPI)



Zig-Zag Pattern

- Single-shot acquisition
- Typically matrix sizes for fMRI
  - 64x64, 96x96
  - 128x128 interleaved
- Acquisition rates
  - TR = 1-2 sec
  - 20-30 slices
- Suffers some artifacts
  - Distortion, ghosts



### **EPI Geometric Distortions**



Jezzard and Balaban, MRM 34:65-73 1995

**Cou**rtesy of P. Jezzard



## **EPI Nyquist Ghost**





Sourtesy of P. Jezzard



## **Spiral Imaging**



**Spiral Pattern** 



Single-shot spiral, TE = 25 ms, TR = 2 s, 32 slices



# **Spiral Imaging**



**Spiral Pattern** 

- Single-shot acquisition
- Typically matrix sizes for fMRI
  - 64x64, 96x96
  - 128x128 interleaved
- Acquisition rates
  - TR = 1-2 sec
  - 20-40 slices
- Suffers some artifacts
  - Blurring



#### **Spiral Off-Resonance Distortions**







perfect shim

poor shim

**Cou**rtesy of P. Jezzard



## **Single-shot Imaging**

- Single-shot imaging is an extremely rapid and useful class of imaging methods.
- It does, however, require high performance hardware. Why?
  - In spin-warp, we acquire a small piece of data for an image with each RF pulse.
  - However in EPI and spiral, we try to acquire all of the data for an image with a single RF pulse.



## **Single-shot Imaging**

- Need powerful gradient amps
- Limitations:
  - Peripheral nerve stimulation
  - Acoustic noise
  - Increased image noise
  - Heating and power consumption in gradient subsystem
- Other issues:
  - Limited spatial resolution
  - Image distortions
  - Some limits on available contrast



### Pulse Sequences (description of image acquisition)

- Two Major Aspects
  - Contrast (Spin Preparation)

What kind of contrast does the image have? What is the TR, TE, Flip Angle, etc.? Gradient echo/spin echo/etc.

#### Localization (Image Acquisition)

How is the image acquired? How is "k-space" sampled? Spatial Resolution?



## **Pulse Sequences**

- Spin Preparation (contrast)
  - Spin Echo (T1, T2, Density)
  - Gradient Echo
  - Inversion Recovery
  - Diffusion
  - Velocity Encoding
- Image Acquisition Method (localization, k-space sampling)
  - Spin-Warp
  - EPI, Spiral
  - RARE, FSE, etc.



### Pulse sequences

There are many, many ways to excite spins and sample k-space





### Localization vs. Contrast

- In many cases, the localization method and the contrast weighting are independent.
  - For example, the spin-warp method can be used for T1, T2, or nearly any other kind of contrast.
  - T2-weighted images can be acquired with spin-warp, EPI, spiral and RARE pulse sequences.



### Localization vs. Contrast

- But, some localization methods are better than others at some kinds of contrast.
  - For example, RARE (FSE) is not very good at generating short-TR, T1-weighted images.
- In general, however, we can think about localization methods and contrast separately.



## The 3<sup>rd</sup> Dimension

- We've talked about 1D and 2D imaging, but the head is 3D.
- Solution #1 3D Imaging
  - Acquire data in a 3D Fourier domain
  - Image is created by using the 3D Fourier transform
  - E.g. 3D spin-warp pulse sequence
- Solution #2 Slice Selection
  - Excite a 2D plane and do 2D imaging
  - Most common approach



## **Slice Selection**

- The 3<sup>rd</sup> dimension is localized during excitation
  - "Slice selective excitation"
- Makes use of the resonance phenomenon
   Only "on-resonant" spins are excited



### **Slice Selection**



With the z-gradient on, slices at different z positions have a different magnetic fields and therefore different frequencies :

 $\omega(z_1) < \omega(z_2) < \omega(z_3)$ 



### **Slice Selection**



Slice 1 is excited by setting the excitation frequency to  $\omega(z_1)$ 

Slice 2 is excited by setting the excitation frequency to  $\omega(z_2)$ 

Interesting note: Exciting a slice does not perturb relaxation processes that are occurring in the other slices.

## **Slice Thickness**

- Slice thickness is adjusted by changing the "bandwidth" of the RF pulse
- Bandwidth ~ 1 / (duration of RF pulse)
  - E.g., for duration = 1 ms, BW ~ 1 kHz





## **Multi-Slice Imaging**

- Since T1's are long, we often would like to have long TR's (500-4000 ms)
- While one slice is recovering (T1), we can image other slices without perturbing the recovery process



## **Multi-Slice Imaging**



### **Advanced Image Acquisition Topics**

- T2 vs. T2\*
  - Spin-echo vs. Gradient-echo
- Parallel Imaging (GRAPPA/SENSE/iPAT/ASSET)
- Simultaneous Multi-Slice Imaging



## What is T2\* (or R2\*)?

- T2\* has two parts:
  - Inter-molecular interactions leading to dephasing, a.k.a. T2 decay (note: the rate R2 = 1/T2)
  - Macroscopic or mesoscopic <u>static</u> magnetic field inhomogeneity leading to dephasing, a.k.a. T2'

$$\frac{1}{T2^*} = \frac{1}{T2'} + \frac{1}{T2} \quad -or - \quad R2^* = R2' + R2$$

- Pulse sequence issues:
  - Spin echoes are sensitive to T2
  - Gradient echoes are sensitive to T2\*







## **Parallel Imaging**

- Basic idea: combining <u>reduced Fourier</u> <u>encoding</u> with <u>coarse coil localization</u> to produce artifact free images
  - Artifacts (aliasing) from reduced Fourier encoding are spatially distinct in manner similar to separation of the coil sensitivity patterns
- Goes by many names. Most common:
- SENSE (<u>SENS</u>itivity <u>E</u>ncoding) (also ASSET)
  - Pruessmann, et al. Magn. Reson. Med. 1999; 42: 952-962.
- GRAPPA (<u>GeneRalized Autocalibrating Partially Parallel</u> <u>A</u>cquisitions) (also iPAT, ARC)
  - Griswold, et al. Magn. Reson. Med. 2002; 47: 1202-10.





#### Localization in MR by Coil Sensitivity

 Coarse localization from parallel receiver channels attached to an array coil



## **SENSE Imaging – An Example**

#### **Full Fourier Encoding** Volume Coil



#### **Full Fourier Encoding** Array Coil









#### Fourier Encoding + Coil 3 Fourier Encoding + Coil 4







S<sub>4B</sub>B



## **SENSE Imaging – An Example**

#### Reduced Fourier – Speed-Up R=2 Volume Coil



#### Insufficient Data To Determine A & B

#### Reduced Fourier – Speed-Up R=2 Array Coil

Extra Coil Measurements Allow Determination of A & B





 $S_{3A}A+S_{3B}B$ 





Reduced Fourier + Coil 2



Reduced Fourier + Coil 3



 $-S_{4A}A+S_{4B}B$ 





## **SENSE Imaging – An Example**



Reduced Fourier + Coil 3





Reduced Fourier + Coil 2

 $\begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{bmatrix} = \begin{bmatrix} S_{1A} & S_{1B} \\ S_{2A} & S_{2B} \\ S_{3A} & S_{3B} \\ S_{4A} & S_{4B} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$ 

Solving this matrix equation leads to A & B and the unaliased image





**y**<sub>1</sub>

**y**<sub>3</sub>

## **Parallel Imaging**

- In the lecturer's opinion, parallel imaging is very useful for structural imaging, but only moderately useful for fMRI.
- Pros:
  - Higher spatial resolution
  - Some reduction of distortions
- Cons:
  - But lower SNR
  - Minimal increase in temporal resolution (in fMRI)



## Simultaneous Multi-Slice Imaging

- Basic Idea: Use coil localization information to separate two or more overlapping slices
- Similar to parallel imaging
- References:
  - Larkman, et al. J. Magn. Reson. Imaging 2001; 13: 313-317.
  - Moeller, et al. Magn. Reson. Med. 2009; 63:1144– 1153.
  - Setsompop, et al. *Magn. Reson. Med.* 2012;
    67:1210–1224.



## Simultaneous Multi-Slice Imaging – An Example





## Simultaneous Multi-Slice Imaging – An Example

- Same basis equations as parallel imaging
- Operates on slices that overlap instead of aliases of a single slice
- Can be combined with parallel imaging

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} S_{1A} & S_{1B} \\ S_{2A} & S_{2B} \\ S_{3A} & S_{3B} \\ S_{4A} & S_{4B} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$





## Simultaneous Multi-Slice Imaging

- Really quite useful for single shot imaging applications like fMRI and diffusion tensor imaging (DTI)
- Pros:
  - Increase in temporal resolution (2x-8x!)
  - Allows for thinner slices
  - Faster acquisition reduced effects of physio noise
- Cons:
  - Small increase in noise, artifact from imperfect decoding of slices

