fMRI Course, Day 9 Pitfalls of fMRI Analysis

Tuesday, August 8th, 2023

Before We Begin

Questions about either 1st- or 2nd-level analysis?

Questions about anything else?

Review of 2nd-Level Analysis

Applying this to a dataset

Inc-Con - All Sessions

SPM{T₂₇₈}

SPM*mip* [0, -1, -1]

> **SPMresults:**./Flanker/sub-06/1stLevel Height threshold T = 2.339836 {p<0.01 (unc.)} Extent threshold k = 30 voxels

Contrast

2 3 4 5 6 Design matrix

1

Statistics: *p-values adjusted for search volume*

set-lev	el		cluster-level				p	eak-level			
p	с	P _{FWE-corr}	9 _{FDR-corr}	k _e	P _{uncorr}	P _{FWE-corr}	9 _{FDR-corr}	7	(Z _E)	P _{uncorr}	
0.846	5	0.026	0.024	198	0.000	0.716	0.996	4.00	3.94	0.000	-39 -73 -22
						1.000	0.996	3.26	3.23	0.001	-42 -52 -19
						1.000	0.996	3.24	3.20	0.001	-27 -70 -16
		0.537	0.175	85	0.011	0.912	0.996	3.79	3.74	0.000	42 -40 -19
						1.000	0.996	3.12	3.09	0.001	48 -52 -25
		0.999	0.794	31	0.102	0.998	0.996	3.48	3.44	0.000	-66 -43 11
		0.489	0.175	89	0.010	1.000	0.996	3.26	3.22	0.001	24 -1 65
						1.000	0.996	2.91	2.89	0.002	33 2 50
						1.000	0.996	2.89	2.86	0.002	30 -7 50
		0.105	0.050	146	0.002	1.000	0.996	3.24	3.20	0.001	9 14 32
						1.000	0.996	3.11	3.08	0.001	0 29 26
						1.000	0.996	3.04	3.01	0.001	-3 20 71

Applying this to a dataset

Set-level: Probability of finding that many clusters

Cluster-level: Probability of finding a cluster of a given size

Peak-level: Probability of a statistic that size in that voxel

Applying this to a dataset

Statistics: *p*-values adjusted for search volume

set-leve	el		cluster-level				р	eak-level			
p	С	P _{FWE-corr}	9 _{FDR-corr}	k _E	P _{uncorr}	$P_{\rm FWE-corr}$	9 _{FDR-corr}	7	(Z _E)	P _{uncorr}	
0.846	5	0.026	0.024	198	0.000	0.716	0.996	4.00	3.94	0.000	-39 -73 -22
						1.000	0.996	3.26	3.23	0.001	-42 -52 -19
						1.000	0.996	3.24	3.20	0.001	-27 -70 -16
		0.537	0.175	85	0.011	0.912	0.996	3.79	3.74	0.000	42 -40 -19
						1.000	0.996	3.12	3.09	0.001	48 -52 -25
		0.999	0.794	31	0.102	0.998	0.996	3.48	3.44	0.000	-66 -43 11
		0.489	0.175	89	0.010	1.000	0.996	3.26	3.22	0.001	24 -1 65
						1.000	0.996	2.91	2.89	0.002	33 2 50
						1.000	0.996	2.89	2.86	0.002	30 -7 50
		0.105	0.050	146	0.002	1.000	0.996	3.24	3.20	0.001	9 14 32
						1.000	0.996	3.11	3.08	0.001	0 29 26
						1.000	0.996	3.04	3.01	0.001	-3 20 71

Demonstration

One of the most versatile tools is the image calculator

Every package has one (AFNI, FSL, MRtrix, etc.)

Simple to do basic arithmetic on a 3D image

SPM12 (7771): Menu			Batch Editor	
		File Edit View SPM	1 BasicIO	
		🗅 🚅 🖬 🕨		
Realign (E Slice timing	Smooth	Module List	Current Module: Image Calculator	
Coregiste Normalise	Segment	Image Calculator	Help on: Image Calculator Input Images Output Filename Output Directory Expression Additional Variables	2 files Inc-Con_Session1 i1-i2
Specify 1st-level	Review		Options . Data Matrix . Masking . Interpolation . Data Type	No - don't read images into data matrix No implicit zero mask Trilinear INT16 - signed short
Specify 2nd-level	Estimate			
Results				
Dvnamic Causal Model	ing		Current Item: Output Filename	
			Inc-Con_Session1	
SPM for functional I	MRI			
Display Check Reg Render	🌣 🛛 FMRI 🗢			
Toolbox: C PPIs ImCa	Ic DICOM Import		Specify	
Help Utils C Batc	h Quit	The output image is writt output directory setting wil If the field is left empty,	ten to current working directory unless a valid Il be ignored. i.e. set to '', then the name of the 1st input ima	full pathname is given. If a path name is given here, the ige, preprended with 'i', is used (change this letter in the
Copyright (c) 1991.1994-2020		A string is entered.	•	

File Edit View Insert Tools Desktop Window SPM Figure Help

Cross	hair Positior	ו (Origin
mm:	0.0	30.0 30.	0
vx:	27.0	48.3 34	.3
Intens	ty: -	0.37464	ł
right	{mm}	0	
forwa	rd {mm}	0	
up	{mm}	0	
pitch	{rad}	0	
roll	{rad}	0	
yaw	{rad}	0	
resi	ze {x}	1	
resi	ze {y}	1	
resi	ze {z}	1	
Set C	Drigin	Reorie	ent

File: ./1stLevel/beta_0002.nii Dimensions: 53 x 63 x 52 Datatype: float32 Intensity: Y = 1 X spm_spm:beta (0002) - Sn(1) Con*bf(1) Vox size: -3 x 3 x 3 Origin: 27 38.3 24.3 Dir Cos: 1.000 0.000 0.000 1.000 0.000 Full Volume

 World Space
 Image: Trilinear interp.

 Auto Window
 Add Overlay...

File Edit View Insert Tools Desktop Window SPM Figure Help Image: Specific Spec			hics	112 (7771): Graph	SP						••
Crosshair Position Origin mm: 0.0 30.0 30.0 vx: 27.0 48.3 34.3 Intensity: 0.375347 right (nm) 0 forward (mm) 0 pitch (rad) 0 origin: 27 38.3 24.3 Dirensity: 1.000 1.000 0.000 pitch (rad) 0 yw (rad) 1 Yordif Space Trilinear interp. Auto Window Add Overlay			Help	SPM Figure	ktop Window	ls Desk	Тос	Insert	View	Edit	File
Crosshair Position Origin mm: 0.0 30.0 30.0 vx: 27.0 48.3 34.3 Intensity: 0.375347 right {mm} 0 forward {mm} 0 optich {rad} 0 resize {x3 1 resize {											
Crosshair Position Origin mm: 0.0 30.0 30.0 vx: 27.0 48.3 34.3 Intensity: 0.375347 right {mm} 0 forward {mm} 0 up {mm} 0 pitch {rad} 0 roit {rad} 0 yaw {rad} 0 resize {x} 1 resize {y} 1 Set Origin Reorient											
mm: 0.0 30.0 30.0 vx: 27.0 48.3 34.3 Intensity: 0.375347 right (mm) 0 forward (mm) 0 up (mm) 0 pitch (rad) 0 vox (rad) 0 vaw (rad) 0 resize (x) 1 resize (z) 1 Set Origin Reorient		.nii	e: ./Inc-Con_Session	File	Drigin	C	sition	shair Po	Cros		
vx: 27.0 48.3 34.3 Intensity: 0.375347 right {mm} 0 forward {mm} 0 up {mm} 0 pitch {rad} 0 roll {rad} 0 yaw {rad} 0 resize {x} 1 resize {z} 1 Set Origin Reorient		x 52	Dimensions: 53 x 63			0.0 30.0	0.0 3		mm:		
Intensity: 0.375347 right (mm) 0 forward (mm) 0 up (mm) 0 pitch (rad) 0 roll (rad) 0 yaw (rad) 0 resize (x) 1 resize (x) 1 resize (z) 1 Set Origin Reorient			Datatype: int16			18 3 34 3	27.0		vx:		
Interisty: 0.3/334/ right {mm} 0 forward {mm} 0 up {mm} 0 pitch {rad} 0 yaw {rad} 0 resize {x} 1 resize {y} 1 Set Origin Reorient		0184054 X	Intensity: $Y = 0.0$			375347	_,.0		Inter		
right {mm} 0 forward {mm} 0 up {mm} 0 pitch {rad} 0 roil {rad} 0 yaw {rad} 0 resize {x} 1 resize {y} 1 Set Origin Reorient		ebra	spm - al			3/534/	0	ary:	inten		
Image: Section of the section of th			-p u			0		t {mm3	righ		
Origin: 27 38.3 24.3 up (mm) 0 pitch (rad) 0 roll (rad) 0 yaw (rad) 0 resize (x) 1 resize (z) 1 Set Origin Reorient Set Origin Reorient		3	Vox size: -3 x 3 x			0		rd from	forture		
up (mm) 0 pitch (rad) 0 roll (rad) 0 yaw (rad) 0 resize {x} 1 resize {y} 1 resize {z} 1 Set Origin Reorient		24.3	Origin: 27 38.3		_	0	U	ina finin	TOTWA		
pitch {rad} 0 roll {rad} 0 yaw {rad} 0 resize {x} 1 resize {y} 1 resize {z} 1 Set Origin Reorient		0.000 0.000	Dir Cos: 1.000		_	0		{mm}	up		
roll [rad] 0 yaw [rad] 0 resize {x} 1 resize {y} 1 resize {z} 1 Set Origin Reorient		1.000 0.000	0.000			0		h {rad}	pito		
yaw {rad} 0 resize {x} 1 resize {y} 1 resize {z} 1 Set Origin Reorient		0.000 1.000	0,000		_	0		{rad}	rol		
resize {x} 1 resize {y} 1 resize {z} 1 Set Origin Reorient			0.000			0		/ {rad}	yav		
resize {y} 1 Full Volume Hide Crosshair resize {z} 1 World Space Trilinear interp. Set Origin Reorient Auto Window Add Overlay						1		ize {x}	res		
resize {z} 1 World Space Trilinear interp. Set Origin Reorient Auto Window Add Overlay		Hide Crosshair	lume 🗘	Full Vol		1		ize {y}	res		
Set Origin Reorient Auto Window	٥	Trilinear interp.	Space 0	World S		1		ize {z}	res		
		Add Overlay	/indow 0	Auto Wi	t	Reorient		Origin	Set		
	_							.5			

Today: Pitfalls of fMRI Analysis

Specifically, non-independence and cluster failure

Ways to avoid these pitfalls

Scientific Standards in Epidemiologic Studies of the Menace of Daily Life

Alvan R. Feinstein

Focused on methods of epidemiological studies

Hypothesizing after the fact

Uncorrected for multiple comparisons

Back in 2009...

Bennet et al.: Illustration of the Multiple Comparisons Problem

Back in 2009...

Absolute Correlation Value

From Vul et al., 2009

Back in 2009...

 $r_{ObservedA, ObservedB} = r_{A,B} \times \sqrt{(reliability_A \times reliability_B)}$

Max estimate for r = 0.74

Absolute Correlation Value

Vul's Interpretation

Significant voxels more likely to benefit from noise

Leads to inflated effect sizes

Absolute Correlation Value

Objections

What if I just want to see what's going on?

My recommendation: Look, but don't publish

If included, explain how it was done, and do *not* include error bars **Objections**

But doesn't the correlation (or effect) actually exist?

Assuming multiple comparisons correction, yes

But, magnitude is also important, and is misleading with biased analyses

Only high correlations are reported

Power drops, effect size inflates

"Winner's Curse"

Button et al., 2013

Nature Reviews | Neuroscience

Button et al., 2013

Button et al., 2013

What to do?

Increase N

Power analyses to estimate effect size

Pre-registered reports

Left Posterior SMG

What about this?

"In this approach, second-level analyses are run for each contrast, consecutively leaving out each subject from the GLM and extracting that subject's contrast estimates from the resulting ROI."

What about this?

What about this?

Remember This?

diminished physiological response to stimulation (22).

Examination of regions of interest in the striatum and VMPFC from the gain/loss conjunction analysis (Fig. 3) revealed that these

Α

coefficient of loss aversion (i.e., the ratio of sensitivity to losses versus gains) is highly correlated across risky and riskless contexts (23). Therefore, we surmise that a similar mechanism may contribute to other manifestations of loss aversion.

Fig. 3. Conjunction analysis results. (A) Map showing regions with conjointly significant positive gain response and negative loss response (P < 0.05, whole-brain corrected, ineach individual map) (see also table S1). Red pixels indicate regions showing significant conjunction; green circles highlight clusters included in the respective heatmaps to the right. L, left; R, right. (B) Heatmaps were created by averaging parameter estimates versus baseline within each cluster in the conjunction map for each of the 16 cells (of 16 gambles each) in the gain/loss matrix; color coding reflects strength of neural response for each condition, such that dark red represents the strongest activation and dark blue represents the strongest deactivation.

Fig. 4. Scatterplot of correspondence between neural loss aversion and behavioral loss aversion in ventral striatum [Montreal Neurological Institute coordinates (*x*, *y*, *z*): 3.6, 6.3, 3.9; center of gravity in millimeters]. Regression line and *P* value were computed with the use of robust regression by iteratively reweighted least squares to prevent the influence of outliers; however, this regression also remained highly significant (*P* = 0.004) when the extreme data point (top right-hand corner) was removed from the analysis. β_{loss} and β_{gain} are the unstandardized regression coefficients for the loss and gain variables, respectively.

Let's try it!

Demonstration
Resources for Independent Analysis

Popular: Harvard-Oxford Atlas, WFU PickAtlas

WFU PickAtlas is a toolbox that needs to be installed

				WFU P	ckAtlas Tool			
HUMAN ATLAS	S->TD brodman	n areas+		BASIC	ADVANCED		WORKING REGION	1
HUMAN ATLAS->TD brodmann areas+ brodmann area 1 brodmann area 3 brodmann area 4 brodmann area 5 brodmann area 7 brodmann area 8 brodmann area 9 brodmann area 10 brodmann area 11 brodmann area 12 brodmann area 13 brodmann area 14 brodmann area 15 brodmann area 16 brodmann area 17 brodmann area 20 brodmann area 21 brodmann area 23 brodmann area 24 brodmann area 25 brodmann area 26 brodmann area 31 brodmann area 31 brodmann area 31			ASIC MC <- REM << 2D DILATE: ✓ Flip Lock Left L Display:	ADD -> DVE ALL ->> DVE ALL ->> DVE ALL ->> DVE ALL 3D 1 <i>L/R U/D</i> eft + Right Right Neurologic 49 R R	brodma	working region		
brodmann area 33 brodmann area 34 brodmann area 35 brodmann area 36 brodmann area 37 brodmann area 38 brodmann area 39 brodmann area 40 brodmann area 41 brodmann area 41 brodmann area 42 brodmann area 43 brodmann area 44 brodmann area 45 brodmann area 46 brodmann area 47 Amygdala Anterior Commissure Caudate Body Caudate Head		Atlas Informatio	37	Mag Mag ANALYSIS Write Indepen S DONE G0	RESULTS dent Regions AVE MASK CANCEL		SUBREGION	VALUE
CUBE	46 0	0	0	GO	TD brodmann areas+	\$	NA	1000

Extracting Data from Sphere

Based on coordinates of another study

corrected						
Brain region	x	y	Z	Zscore	Cluster-corrected p value	Cluster size (voxels)
Pain						
Right somatosensory cortex	38	-24	54	5.91	< 0.001	762
Right insula	40	-18	12	5.76	< 0.001	902
Left cerebellum	-28	-56	-24	5.43	< 0.001	832
Left cingulate gyrus	-2	30	14	5.17	< 0.001	788
Right cerebellum	2	-72	-14	4.26	< 0.001	524
Right parieto-occipital sulcus	8	-84	40	3.85	<0.001	335

Table 1. Whole-brain activations at n < 0.001 uncorrected n < 0.05 cluster-

1: dACC_Sphere

Label:	dACC_Sphere	е	
Centre of	mass:	0	20 40
Volume (r	mm):	(648.00
Max/min	X(mm):	-4	4
Max/min	Y(mm):	16	5 24
Max/min	Z(mm):	36	5 44

Neurosynth

How it works: Search Terms

Cross-Validation

Esterman et al., 2010

Questions?

Biased Analyses: What to do about it?

Choose an independent analysis

Know the reasons behind choosing it

An "independent" analysis does not guarantee non-biased results! Cluster Failure: A Discussion of Eklund et al. (2016)

...we found that the most common software packages for fMRI...can result in false-positive rates of up to 70%. These results question the validity of some 40,000 fMRI studies. [Emphasis added.]

When science goes wrong (I)

Computer says: oops

Two studies, one on neuroscience and one on palaeoclimatology, cast doubt on established results. First, neuroscience and the reliability of brain scanning

PERSPECTIVE

Circular analysis in systems neuroscience: the dangers of double dipping

Nikolaus Kriegeskorte, W Kyle Simmons, Patrick S F Bellgowan & Chris I Baker

nature neuroscience

PERSPECTIVE

PERSPECTIVES ON PSYCHOLOGICAL SCIENCE

Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition¹

Edward Vul,¹ Christine Harris,² Piotr Winkielman,² & Harold Pashler² ¹Massachussetts Institute of Technology and ²University of California, San Diego

Erroneous analyses of interactions in neuroscience: a problem of significance

Sander Nieuwenhuis^{1,2}, Birte U Forstmann³ & Eric-Jan Wagenmakers³

Adapted from Woo et al. (2014)

Is this true?

How big of a problem is this?

What should we do about it?

Problems with Cluster Thresholding

1. Using default thresholds

2. Clusters span multiple areas

3. Cluster simulations violate parametric assumptions

Problem #1 Using default thresholds

Problem #2 Clusters span multiple areas

Problem #3 Violation of assumptions

Cluster thresholding methods assume that:

1) Spatial smoothness is constant over the entire brain; and

2) Spatial autocorrelation is normally distributed

1. Smoothness varies over the brain

Smoothing increases spatial correlation

Smoothing increases cluster size

2. Spatial autocorrelation is best modeled as a mixture of Gaussian and exponential distributions

Should we trust cluster corrected results from SPM?

Unclear how SPM has addressed this in latest updates

FSL seems unaffected with default settings

AFNI has made attempts to address this, as we will see

Cox et al., 2017

Smoothness is estimated from the residuals

3dFWHMx -mask mask.nii –input errts.nii -acf

- 3dFWHMx: AFNI version=AFNI_16.1.28 (Jun 30 2016) [64-bit]
- ++ Authored by: The Bob
- ++ Number of voxels in mask = 174611
- ++ start FWHM calculations
- + FWHM done (0.00 CPU s thus far)
- 0.827124 2.9802 5.31313 7.16512

These smoothness estimates form <u>cluster thresholds</u>

3dClustSim - mask mask_group+tlrc - acf 0.827 2.980 5.313 - **athr** 0.05 - **pthr** 0.001

- 3dClustSim: AFNI version=AFNI_16.1.28 (Jun 30 2016) [64-bit]
- ++ 174611 voxels in mask (19.34% of total)
- ++ Padding by 10 x 10 x 10 slices to allow for edge effects of blurring
- ++ Startup clock time = 0.0 s
- ++ Using 8 OpenMP threads
- # CLUSTER SIZE THRESHOLD(pthr,alpha) in Voxels
- # -NN 3 | alpha = Prob(Cluster >= given size)
- # 3dClustSim -mask mask_group+tlrc -acf 0.827 2.980 5.313 -athr 0.05 -pthr 0.001
- # 1-sided thresholding
- # Grid: 61x73x61 3.00x3.00x3.00 mm^3 (73409 voxels in mask)
- #
 # _CLUSTER SIZE THRESHOLD(pthr,alpha) in Voxels
- # -NN 1 | alpha = Prob(Cluster >= given size)
- # pthr | .05000
- # ----- | -----
- 0.001000 8.6

i.e., A cluster size of 9 voxels or more is significant

Determine whether clusters pass threshold

Voxels survived clustering = 11234Voxels edited out= 1776NN clustering level= 1 [faces touch]										
🔲 Us	e in	ternal	l mask (Proe 3d0	lustSir	Iink®	brain t	ype Ta	isks 🗖	
	#3 X	YZ Pe	ak 🗖	3dclust	SaveT	abl Clu	st	∂aveMs	k WamI	Done
###:	Si	ze	X	Y	Z				Â.	lpha
□1:	5496	vox	+28.0	+56.0	-24.0	Jump Fla	sh Plot	Save	Write N	/Csim
□2:	1702	vox	-40.0	+18.0	+12.0	Jump Fla	sh Plot	Save	Write N	/Csim
3:	1572	vox	+2.0	-30.0	+14.0	Jump Fla	sh Plot	Save	Write N	/Csim
□ 4:	1239	vox	-38.0	+24.0	+54.0	Jump Fla	sh Plot	Save	Write N	/Csim
□ 5:	1225	vox	+38.0	+20.0	+12.0	Jump Fla	sh Plot	Save	Write N	/Csim

Greater than 9?

1)Use voxel-wise thresholds;

2)Use more conservative cluster thresholds; or

3)Use nonparametric methods (e.g., permutations)

FSL's randomise (requires creating a design matrix)

SPM's SnPM (separate toolbox)

No assumption of the distribution the data were drawn from

The data itself is used to construct a new distribution

Example: We have a positively-skewed distribution, and still want to use p-values

А	В	А	В	А	В
103.00	90.48	99.93	87.83	99.76	96.06

Experiment with two conditions: A=StimOn, B=StimOff

Null Hypothesis: Labels are arbitrary

Construct a set of all possible relabelings

AAABBB	ABABAB	BAAABB	BABBAA
AABABB	ABABBA	BAABAB	BBAAAB
AABBAB	ABBAAB	BAABBA	BBAABA
AABBBA	ABBABA	BABAAB	BBABAA
ABAABB	ABBBAA	BABABA	BBBAAA

Construct a set of all possible relabelings

AAABBB 4.82	ABABAB 9.45	BAAABB -1.48	BABBAA -6.86
AABABB -3.25	ABABBA 6.97	BAABAB 1.10	BBAAAB 3.15
AABBAB -0.67	ABBAAB 1.38	BAABBA -1.38	BBAABA 0.67
AABBBA -3.15	ABBABA -1.10	BABAAB -6.97	BBABAA 3.25
ABAABB 6.86	ABBBAA 1.48	BABABA -9.45	BBBAAA -4.82

Construct a set of all possible relabelings

AAABBB 4.82	ABABAB 9.45	BAAABB -1.48	BABBAA -6.86
AABABB -3.25	ABABBA 6.97	BAABAB 1.10	BBAAAB 3.15
AABBAB -0.67	ABBAAB 1.38	BAABBA -1.38	BBAABA 0.67
AABBBA -3.15	ABBABA -1.10	BABAAB -6.97	BBABAA 3.25
ABAABB 6.86	ABBBAA 1.48	BABABA -9.45	BBBAAA -4.82
Non-parametric tests

Construct a set of all possible relabelings

SnPM

承 B	atch Ed	itor						- 0	×	
File	Edit	View	SPM	BasiclO						¥
	è 🖬		Т	[emporal	>					
Mo	dule Lis	st	s	Spatial	>	Nodule				
No	Mod	ules ir	s	Stats	>	e selected			^	
			0	ОСМ	>					
			N	M/EEG	>					
			ι	Jtil	>					
			Т	Fools	3	Dartel Tools	>			
			E	Edit Defaults		FieldMap	>			
		L				Longitudinal Registration	>			
						Old Normalise	>			
						Old Segment				
						Rendering	>			
						Shoot Tools	>			
						SnPM	3	Specify 💦		SingleSub: Two Sample T test; 2 conditions, replications
								Compute		SingleSub: Simple Regression (correlation); single covariate of interest
								Inference		MultiSub: One Sample T test on diffs/contrasts
										MultiSub: Simple Regression; 1 covariate of interest
										MultiSub: Paired T test; 2 conditions, 1 scan per condition
										Within Subject ANOVA, k diffs/contrasts per subject
<			, [×]							2 Groups: Two Sample T test; 1 scan per subject
		_								2 Groups: Test diff of response; 2 conditions, 1 scan per condition
MA	ATLA	B Bato	ch Sys	stem						Between group ANOVA; 1 scan per subject
Ma	tlabb	atch U	Jser Ir	nterface						
* N	lenu a	ind To	olbar	r						
-						and and the local second		a a lab and	¥	

SnPM

承 Batch Editor	-	
File Edit View SPM BasiclO		
D 😅 🖬 🕨		
Module List	Current Module: MultiSub: One Sample T test on diffs/contrasts	
MultiSub: One Sample T test on ^	Help on: MultiSub: One Sample T test on diffs/contrasts Analysis Directory ts\2x2\Face-Hand\nonParam	etric
	Images to analyze 10	files
	Covariates Number of Permutations Variance smoothing [0] Memory usage	000 0 0] High
	Cluster inference . None Masking . Threshold masking . None	nign
	. Implicit Mask . Explicit Mask Global calculation . Omit Global normalisation . Overall grand mean scaling	Yes
	. Normalisation N	lone 🗸
	Current Item: Images to analyze	
	C:\fMRI_Course\Data\SPM_Labs\Subjects\sub01\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub02\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub03\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub03\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub05\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub05\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub07\results\precooked\2x2\con_0002.ir C:\fMRI_Course\Data\SPM_Labs\Subjects\sub07\results\precooked\2x2\con_0002.ir	mg,1 ^ mg,1
< >	Specify	

 \sim

Images to analyze

Model will be fit to these images.

	Batch Editor					
ile Edit View SPM BasicIO						
) 😅 🖬 🕨						
Module List	Current Module: Inference					
MultiSub: One Sample T test on diffs/ Compute Inference	Help on: Inference SnPM.mat results file Type of Thresholding . Cluster-Level Inference Cluster-Forming Threshold	DEP Compute: SnPM.mat results file 0.001 0.05 Positives SnPM_filtered Standard (MIP & table)				
	Specify	Dependency				
SnPM.mat results file						

Non-Parametric Analyses: Pros and Cons

Pros: Tends to be accurate for multiple comparisons

No assumption about the shape of the distribution

Cons: Conservative for small sample sizes

Assumes exchangeability of data

3dttest++

Using the –Clustsim option will generate a table for each cluster-wise p-threshold

Which threshold you use is up to you; there is nothing taboo about using 0.01 or 0.05

AFNI Distributions since 2019 will use mixed ACF

Cox et al., 2017

3dClustSim Demo

Problems with 3dClustSim

Still a risk of false negatives

Uses arbitrary threshold set by user

Threshold-Free Cluster Enhancement (TFCE)

What if we didn't have to set a cluster-forming threshold?

Calculate the area under the curve

Similar to AFNI's Equitable Thresholding and Clustering (ETAC)

Threshold-Free Cluster Enhancement (TFCE)

No parametric assumptions about shaped of smoothness

Balances the extent and height thresholds at constant FPR

Demonstration

Other Statistical Scenarios

Once you calculate a contrast, are you done?

Consider this: My brother and I both play basketball. If I tell you that I am slightly better than he is, does that mean:

We are both really good, but I'm just a little better?

I'm a little above average, and he's a little below average?

Maybe we're both terrible, and I'm just a little better than he is

Double Dissociations

Condition A is significant in region A but not region B, and condition B is significant is region B but not region A

Remember to run a paired t-test within each region, and also a Region x Condition interaction

Double Dissociations

Nieuwenhuis et al., 2011

Double Dissociations

Jahn et al., 2016

Triple Dissociations (!)

De la Vega et al., 2016

Preview: ROI Analysis

In the examples just shown, the data was extracted from Regions of Interest (ROIs)

That is, subsets of voxels that we are interested in

				WFU P	ckAtlas Tool			
HUMAN ATLAS	S->TD brodman	n areas+		BASIC	ADVANCED		WORKING REGION	1
brodmann area 1 brodmann area 2 brodmann area 3 brodmann area 3 brodmann area 4 brodmann area 5 brodmann area 6 brodmann area 6 brodmann area 7 brodmann area 7 brodmann area 8 brodmann area 9 brodmann area 10 brodmann area 11 brodmann area 13 brodmann area 13 brodmann area 13 brodmann area 14 brodmann area 15 brodmann area 16 brodmann area 16 brodmann area 17 brodmann area 21 brodmann area 20 brodmann area 21 brodmann area 22 brodmann area 23 brodmann area 24 brodmann area 25 brodmann area 25 brodmann area 27 brodmann area 27 brodmann area 28 brodmann area 30 brodmann area 31 brodmann area 31 brodmann area 31				ASIC MC <- REM << 2D DILATE: ✓ Flip Lock Left L Display:	ADD -> DVE ALL ->> DVE ALL ->> DVE ALL ->> DVE ALL 3D 1 <i>L/R U/D</i> eft + Right Right Neurologic 49 R R	brodma	brodmann area 32	
brodmann area 33 brodmann area 34 brodmann area 35 brodmann area 36 brodmann area 37 brodmann area 38 brodmann area 39 brodmann area 40 brodmann area 41 brodmann area 42 brodmann area 43 brodmann area 44 brodmann area 45 brodmann area 46 brodmann area 47 Amygdala Anterior Commissure Caudate Body Caudate Head		Atlas Informatio	37	Mag Mag ANALYSIS Write Indepen S DONE G0	RESULTS dent Regions AVE MASK CANCEL		SUBREGION	VALUE
CUBE	46 0	0	0	GO	TD brodmann areas+	\$	NA	1000

1: dACC_Sphere

Label:	dACC_Sphere	е	
Centre of	mass:	0	20 40
Volume (r	mm):	(648.00
Max/min	X(mm):	-4	4
Max/min	Y(mm):	16	5 24
Max/min	Z(mm):	36	5 44

Questions?

Bonus Slides: Kriegeskorte et al., 2010

Recommendations for how to avoid non-independence

Kriegeskorte et al., 2010

Kriegeskorte et al., 2009

The supplementary material reviews different scenarios

13. Can an omnibus F test safely be used to select channels for a subsequent selective analysis?

No. An omnibus F test determines whether the model as a whole explains significant variance in the data. It is, thus, sensitive to all effects modeled by the design matrix. Selection according to the omnibus F value will select channels whose data best conform to the model.

Consider the case of a single-predictor model (e.g. stimulation versus baseline). The omnibus F statistic will select channels that exhibit either positive or negative effects. Although there is no preference for either effect direction, channels with effect estimates close to zero will not be selected. If we were to test selected channels, t values under the null hypothesis would not follow a t distribution. In the extreme

ROI_DEF = ROI defining analysis; ROI_ANA = ROI analysis

- 1. Orthogonal contrasts may refer to first level contrast vectors that are orthogonal (e.g. face+house and face-house) or orthogonal second level contrasts (group mean used for ROI_DEF where ROI_ANA is group comparison).
- 2. See supplement of Kriegeskorte *et al.* (2009), bottom of p1 for orthogonal contrast and <u>http://mumfordbrainstats.tumblr.com/post/126904300281/less-obvious-double-dipping</u>. Typical practices are using a 1-sample t-test for ROI_DEF and a different ROI_ANA. For the example of using a group mean for ROI_DEF and 2-sample t for ROI_ANA, the contrasts are A-B and A+B, and Cov(A-B, A+B)=Var(A)-Var(B), which is only 0 if the variances are equal. Thus orthogonality of the contrasts does not imply independence of the tests, unless the variances are equal. FYI, adding in a test of equal variances will not get you out of this jam, since it has its own false positive rate and those tests don't tend to work well.
- 3. Kriegeskorte et al. (2009) or Vul et al. (2009).
- 4. This assumes you either had 2 sets of runs with the same task or 2 sets of runs with different tasks, such as a localizer and task of interest. The latter is clearly independent and for the former, see page 2 of the supplement for Kriegeskorte *et al.* (2009) for a set of guidelines for splitting up runs for ROI_DEF and ROI_ANA.
- 5. If you looked at the whole brain results that mirror what you'll do for ROI_ANA, even at uncorrected thresholds, it will now be difficult to choose an ROI from independent data without bias leaking in.

Checking Data Quality

% Select all high resolution anatomical images folder='C:\fMRI_Course\Data\SPM_Labs\Subjects\sub*\anatomy\precooked\wanat_hires.nii'; files=dir(folder);

%Start with an empty variable in case we run this script multiple times clear myHiRes

% Combine folder names with file names for n=1:size(files);

```
myHiRes\{n\} = [files(n).folder, '\', files(n).name, ',1'];
```

end

% Transpose and convert to character array myHiRes = char(myHiRes');

Create Mean Anatomical

SPM12 (7771): Menu		Batch Editor				
	File Edit View	SPM BasicIO				
	D 🚔 🖬 🕨					
Realign (E > Slice timing Smoot	th	Current Module: Image Calculator				
	Image Calculator	<-X Help on: Image Calculator Input Images	6 files			
Coregiste Normalise Segme	ent /	Output Filename	output			
		Additional Variables	۸->			
		Options Data Matrix	No - don't read images into data matrix			
Specify 1st-level Review		. Masking . Interpolation	No implicit zero mask Trilinear			
		. Data Type	INT 16 - signed short			
Specify 2nd-level Estimate						
Beaulta						
Results		Enter a value.				
		To clear a value, clear the input field and accept.				
Dynamic Causal Modelling		Leave input box with CTRL-TAB to access buttons.				
		(i1+i2+i3+i4+i5+i6)/6				
0014 (and and inval MD)			OK Cancel			
SPIVI for functional IVIRI						
Display Check Reg Render	RI ≎					
		Specify				
Toolbox: PPIs ImCalc DICO	M Import					
	Expression					
Help Utils	Quit Example expressions: * Mean of six images	(select six images)				
	(i1+i2+i3+i4+i5+i0 * Make a binary mask	6)/6 image at threshold of 100				
Copyright (c) 1991.1994-2020	i1>100					

Examine Results

	peak-level					cluster-level				level cluster-		
	P _{uncorr}	(Z_)	T	q _{FDR-corr}	P _{FWE-cor}	P _{uncorr}	^k E	q _{FDR-corr}	P _{FWE-cor}	с	p	
-33 -4 -2	0.000	5.25	14.45	0.123	0.004	0.000	97	0.000	0.001	37	0.000	
-24 -7 -2	0.000	4.08	7.31	0.280	0.768							
-24 -10 -7	0.000	3.91	6.65	0.356	0.901							
51 -64 2	0.000	5.16	13.71	0.123	0.007	0.009	34	0.034	0.122			
-42 17 -3	0.000	5.07	12.94	0.123	0.012	0.000	2413	0.000	0.000			
-51 11 -2	0.000	4.98	12.31	0.123	0.018							
-39 2 -3	0.000	4.90	11.70	0.123	0.027							
-54 -67 2	0.000	5.00	12.39	0.123	0.017	0.000	112	0.000	0.000			
-48 -67 3	0.000	4.81	11.10	0.123	0.043							
30 -85 -4	0.000	4.68	10.25	0.123	0.084	0.000	251	0.000	0.000			
36 -76 -4	0.000	4.15	7.60	0.262	0.702							
18 -82 -3	0.000	4.06	7.22	0.280	0.789							
-9 -58 2	0.000	4.68	10.25	0.123	0.084	0.000	267	0.000	0.000			
-6 -58 3	0.000	4.58	9.69	0.152	0.133							
-12 -52 3	0.000	4.51	9.32	0.168	0.184							
51 5 -2	0.000	4.34	8.47	0.207	0.403	0.000	151	0.000	0.000			
42 5 -3	0.000	3.94	6.78	0.339	0.880							
48 5 -1	0.000	3.72	6.02	0.443	0.974							
27 -28 -2	0.000	4.08	7.31	0.280	0.770	0.066	15	0.175	0.607			
18 -22 -2	0.001	3.25	4.67	0.807	1.000							
-24 -37 -2	0.000	3.98	6.91	0.316	0.855	0.005	42	0.021	0.062			
			apart	an 8.0mm a	naxima more ti	ws 3 local n	table sho					
	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000	4.81 4.68 4.15 4.06 4.68 4.51 4.34 3.94 3.72 4.08 3.25 3.98	11.10 10.25 7.60 7.22 10.25 9.69 9.32 8.47 6.78 6.02 7.31 4.67 6.91 apart	0.123 0.262 0.280 0.152 0.152 0.168 0.207 0.339 0.443 0.280 0.807 0.316 man & Omma	0.043 0.084 0.702 0.789 0.084 0.133 0.184 0.403 0.880 0.974 0.770 1.000 0.855 maxima more th	0.000 0.000 0.000 0.066 0.005 wws3localm	251 267 151 15 42 table sho	0.000 0.000 0.000 0.175 0.021	0.000 0.000 0.000 0.607 0.062			

Height threshold: T = 4.30, p = 0.001 (1.000) Extent threshold: K = 0 voxels Expected voxels per cluster, < x > = 4.453Expected number of clusters, < x > = 14.13FWEp: 10.901, FDRp: Inf, FWEc: 46, FDRc: 34 Degrees of freedom = [1.0, 9.0] FWHM = 14.2 14.0 12.6 mm mm mm; 4.7 4.7 4.2 {voxels} Volume: 155393 1 = 57553 voxels = 555.6 resels Voxel size: 3.0 3.0 3.0 mm mm mm; (resel = 92.56 voxels) Page 1

< >