Multivoxel pattern-based real-time fMRI

Stephen LaConte

Fralin Biomedical Research Institute Department of Biomedical Engineering and Mechanics

Multivoxel pattern-based real-time fMRI

- Conceptual overview
- Experimental flexibility
- Practicalities and additional resources

Classification in Real Time

LaConte et al. Hum Brain Mapp (2007)

Conceptual overview

Supervised-learning rtfMRI

- Enables experimental flexibility
- Embodies "MVPA"
 - Complements region-based approaches
 - Enables brain-state decoding
 - Is computationally ideal for rtfMRI

Supervised learning

Complements univariate approaches (Friston, 1995; McIntosh, 1996; Strother, 2002; Moeller and Habeck 2006) Early demonstrations (Lautrup, 1994; Dehaene, 1998) Methodology and validation (Strother, 2002; LaConte, 2003; Mitchell 2004) Representation of different classes of stimuli (Haxby, 2001; Cox and Savoy, 2003; Haynes & Rees, 2005; Kamitani & Tong 2005) Detecting and tracking cognitive states (Polyn, 2005) Natural representation for real-time fMRI (LaConte, 2007; Shibata, 2011; deBettencourt, 2015)

Brain State Classification

Classification

Linear Discriminant Analysis

Linear Discriminant Analysis

time

X

voxels

Data Matrix:

PCA via SVD:

 $\mathbf{U}^{\mathrm{T}}\mathbf{X} = \Lambda\mathbf{V}^{\mathrm{T}} = Z$

Truncate Q (model complexity)

CVA:

$$\mathbf{C} = \mathbf{L}\mathbf{Z}^* = \mathbf{L}\mathbf{U}^{\mathrm{T}*}\mathbf{X}$$

Columns of L are determined by the eigenvectors of W⁻¹B. W is the within class variance and B the between class variance, and both are obtained from Z.

Support Vector Machine

SVM $D(\vec{z}_t) = (\vec{w} \cdot \vec{z}_t) + w_0$ minimize $\xi_t + \frac{1}{2} \|\vec{w}\|^2$ t=1

This term allows some training errors.

This term favors the widest possible margin,

C = infinity is hard margin SVM (as apposed to soft margin) because it does not allow any training errors

Nonlinear Decision Boundary

Multi-class

4-Class Model

Individual 2-class models

Temporal Regression

Predicting Network Time Series

Craddock, R.C. et al. OHBM 2012.

Pattern-based rtfMRI

Pattern-based rtfMRI

LaConte, et al. (2007) Hum Brain Mapp. 28: 1033-1044

Network configuration

Intensity (brightness) of a single pixel, changing during stimulus conditions

Controller interface for some display parameters

he AFNI interface

Slide provided by Ziad Saad

Multivoxel pattern-based real-time fMRI

- Conceptual overview
- Experimental flexibility
- Practicalities and additional resources

Flexibility of brain state classification

With the exact same experimental setup (different instructions), subjects can learn to move the arrow

LaConte, et al. (2007) Hum Brain Mapp

Experimental flexibility: Task appropriate interfaces

Cigarette craving

	0	
crave		don't crave

Covert counting rate

In collaboration with Pearl Chiu

Experimental flexibility: Support vector regression of RSNs

neurofeedback

controling events

Experimental flexibility: Brain Machine Interfaces

with Shashank Priya and Read Montague

Experimental flexibility: Brain Machine Interfaces

Support Vector Machine Maps of Real-Time Tasks \bullet FAST Z=0 Z=31 Z=8 X=-5 Y=15 Crave vs. Don't Crave Right vs. Left Tapping Fast vs. Slow Counting

Do feedback runs differ from nofeedback runs?

Speech: Covert counting Classification accuracy

Papageorgiou, et al. PNAS, 2013.

Speech: Covert counting

z=3

x=48

z=41

Papageorgiou, et al. PNAS, 2013.

Low accuracy subjects

With Feedback

Without Feedback

High accuracy subjects

With Feedback

Without Feedback

Multivoxel pattern-based real-time fMRI

- Conceptual overview
- Experimental flexibility
- Practicalities and additional resources

Computational considerations

First real-time FMRI (Cox et al., 1995), developed a recursive partial correlation algorithm.

$$\rho = \frac{(\mathbf{P}\mathbf{r})^T(\mathbf{P}\mathbf{x})}{|\mathbf{P}\mathbf{r}| \cdot |\mathbf{P}\mathbf{x}|} = \frac{\mathbf{r}^T \mathbf{P}\mathbf{x}}{(\mathbf{r}^T \mathbf{P}\mathbf{r} \cdot \mathbf{x}^T \mathbf{P}\mathbf{x})^{1/2}} \quad \alpha = \frac{\mathbf{r}^T \mathbf{P}\mathbf{x}}{\mathbf{r}^T \mathbf{P}\mathbf{r}}.$$
 [2]

Equation [2] is not well suited for real-time FMRI...As the number of images grows (i.e., as the vectors increase in dimension), the amount of calculation will grow. In a real-time application, this is unacceptable, because at some point the computer will not be able to finish processing a new image before the next one is ready.

Computational considerations

- Real-time classification
 - Train with a deterministic algorithm
 - Training is computationally intensive but highly doable
 - Converge "immediately" after scan
 - Classify on an image-by-image basis

Basic Benchmarks

- Classifier safety factor > 20,000x.
 Approximately 1µsec / dot product.
- Network/AFNI Transfers > 20x volumes
 - Approximately 100 µsec / slice to transfer

3dsvm Plugin Screenshot Support Vector Machine Analysis

Real-time									
Training		AFNI Plugin: Set Real-Time Options for 3dsvm - An AFNI SVM-Light Plugin							
			Run+Keep		Run+Close		Help		
	_								
🗖 Train Params		Туре	classification 🗖						
		Labels	-Choose Timeseries-	Censors	-Choose Timeseries-				
		Mask	— Choose Dataset —	с	V 🔺 1000	Epsilon	V 🔺 🚺 🕹		
Model Output		Kernel	linear 🗖	poly order (d)	▼ ▲ 3	rbf ganna (g) 🔽 🔺 🚺		
Model Inspection		Prefix							
	ion	FIM Prefix		Alpha Prix (,1D					
LTesting									
Test Data		Model	— Choose Dataset —						
		Ib		PORT					
		Prefix (.1D)							
Predictions									
r									

3dsvm

LaConte Lab

forme | Research | Publications | Facility | People | Links Slides | 3dsym

3dsvm - an SVM-Light plugin for AFNI

description | interactive screen shot | download info | data and use todo | developers | reference

description

3dsvm is a command line program and plugin for AFNI, built around SVM-Light. It provides the ability to analyze functional magnetic resonance imaging (fMRI) data as described in (LaConte et al., 2005)

Features

- Reading AFNI-supported binary image formats
- Masking of variables (brain pixels)
 Censoring training samples
- Censoring training samples
 Visualizing alohas as time series and linear weight vectors as functional over
- Classifying multiple categories

Supervised learning of fMRI with 3dsvm can be used for predicting brain states to enhance our understanding of brain systems, complementing the conventional emphasis on spatial mapping. The figure below classification formalism used by 3dsvm. For each time point, the brain voxel intensibles can be represented in a high-dimensional vector space. During an fMRI experiment, each image is a point in the vector sp of these points, a classification model can be estimated to distinguish between experimental states. After the model is determined, independent data can be assigned a class membership.

- 3dsvm is a command line program and plugin for AFNI, built around SVM-Light. It provides the ability to analyze functional magnetic resonance imaging (fMRI) data as described in (LaConte et al., 2005)
- lacontelab.org/3dsvm.html

	Alpha Profix (.1D)	

3dsvm features

- Distributed with AFNI
- Reading AFNI-supported formats (including NIfTI)
 - Thus all preprocessing and data manipulation of the major software packages
- Masking of variables (brain pixels)
- Censoring training samples
- Visualizing alphas as time series and linear weight vectors as functional maps
- Multi-class classification
- Regression
- Support for non-linear kernels

3dsvm tour: basic steps

Prepare training and test data sets

- fMRI (3D+t)
- Labels (1D) labels for test data are optional (needed to to calculate accuracy)
- Mask for training data (3D) 3dsvm considers mask to be part of the model it generates
- 3dsvm training
 - Creates a model that can be tested with independent data
 - For convenience, inspecting the model
 - Model alphas (1D)
 - Weight vector map (3D)
- 3dsvm testing
 - Calculates class and/or distance measure for each new timepoint
 - Prediction accuracy (if test set labels are available)

3dsvm Plugin Snapshot Support Vector Machine Analysis

	AFNI Plugin: 3dsvm – An AFNI SVM Light Plugin					
	Quit		Run+Keep		Run+Close	Help
	Training					
	🗍 Train Data	Dataset	Choose Dataset	Labels	-Choose Timeseries-	Censors - Choose Timeseries-
training	🔲 Train Params	Mask	Choose Dataset	Kernel	Linear 🗖	C 🔽 🖌 🚺 100
	Model Output	Prefix				
	Model Inspection	FIM Prefi>	× []	Alpha Prefix (.10)	
	Testing					
testing	🗖 Test Data	Dataset	— Choose Dataset —	Moxle1	— Choose Dataset —	I
testing	🗌 Label Output	Prefix (.1	(0)			
	☐ 'True' Labels	File	-Choose Timeseries-			

Command Line

Training - 3dsvm -trainvol run1+orig \ -trainlabels run1_categories.1D \ -mask mask+orig \ -model model_run1

Testing - 3dsvm -testvol run2+orig \ -model model_run1+orig \ -predictions pred2_model1

Left vs. Right visual stimulus

Bimanual coordination task:

Feedback of both the left and right hand performance was provided by a four arc display described in (Klaiman and Karniel, 2006), where button tapping was used to move the inner arches to match the speed of the outer arches.

1:1 – Good Performance

1:1 – Poor Performance

3:2 – Good Performance

3:2 – Poor Performance

Group brain maps of the SVM models for the 14 subjects

first two TRs have been removed for each transition between stimuli.

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

3dsvm -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1

ex<u>ample</u>2

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask run1 PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \ -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1_classout

#!/bin/csh
example by Prashant Prasad

3dsvm -trainvol volreg_run1_PPA+orig \
 -trainlabels LABEL_PPA_1.1D \
 -mask automask_run1_PPA+orig \
 -bucket bucket_run1_PPA \
 -model model_run1_PPA

3dsvm -classout \
 -testvol volreg_run2_PPA+orig \
 -testlabels LABEL_PPA_2.1D \
 -model model_run1_PPA+orig \
 -predictions pred_run2_frmRun1_classout

3dsvm -testvol volreg_run2_PPA+orig \ -testlabels LABEL_PPA_2.1D \ -model model_run1_PPA+orig \ -predictions pred_run2_frmRun1

1:1 vs. Fixation (93% Accuracy) 3:2 vs. Fixation (93% Accuracy) 1

Demonstration Experiment

Initial scans

• Localizer (9 seconds)

• Anatomical scan (4.5 minutes)

LaConte, Neurolmage (2011)

fMRI runs

• Masking run (10 seconds)

• Training run (6 minutes)

• Feedback run (6 minutes)

Setting up AFNI's RT plugin

• Manually

- Good for learning and demo

00	90			🔀 [A] RT Opt	ions				
		AF	NI Plugin: Se	et Real-Time	Acquisition Opt	ions			
	Quit		Set+Kee	p 📃	Set+Close			Help	
	Images Only	No 🗖							
	Root	(
	Update	1 🗖							
	Function	None 🗖							
	Verbose	Yes 🗖							
	Registration	Non	e 🗖	Base Image	3 🗖	Resa	mpling 🛛	Quintic 🗖	Ξ
	Graph	No	F	NR [x-axis]	V A [100	YR [y-axis]	/ 🔺 🚺	
	Mask	Choos	se Dataset	Vals to Sen	d None 🗖				
	RT Write	Off		Channe1Merg	e none 🗖				
<u> </u>									

Slide provided by Ziad Saad

Setting up AFNI's RT plugin

• Via Environment Variables

setenv AFNI_REALTIME_Registration setenv AFNI_REALTIME_Graph 3D:_realtime Realtime

00	0		🔀 [A] RT Options	
		AFNI Plugin: Se	et Real-Time Acquisition Opt	ions
	Quit	Set+Keej	Set+Close	Help
Г	Images Only	No 🗖		
Г	Root	[]_		
	Update	1 🗖		
	Function	None 🗖		
	Verbose	Yes 🗖		
	Registration	3D: realtime 🗖	Base Image 3 🗖	Resampling Quintic 🗖
	Graph	Realtime 🗖	NR [x-axis] 🔽 🔺 100	YR [y-axis] 🔻 🔺 🚺
	Mask	Choose Dataset	Vals to Send 🛛 None 🗖	
	RT Write	1	ChannelMerge none 🗖	

Slide provided by Ziad Saad

AFNI help resources

- Readme files
 - README.driver
 - README.environment
 - README.realtime
- Demo material available on: http://afni.nimh.nih.gov
- Automation
 - @DriveAfni script
 - @DriveSuma script
 - @DO.examples
- Sample programs
 - rtfeedme.c
 - Dimon.c
 - serial_helper.c
 - realtime_receiver.py

Multivoxel pattern-based real-time fMRI

- Conceptual overview
 - Supervised learning for fMRI
 - (classification and regression)
 - Integration with MRI and real-time platforms
- Experimental flexibility
 - Whole-brain models trained to the distributed patterns of each individual for neurofeedback, BCIs, adaptive fMRI paradigms, etc.
 - Feedback improves classifications
 - Employs frontoparietal networks
- Practicalities and additional resources
 - 3dsvm and AFNI's realtime plugin