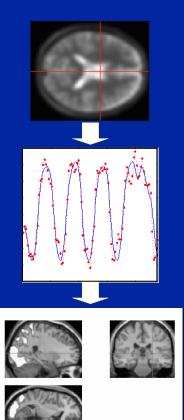
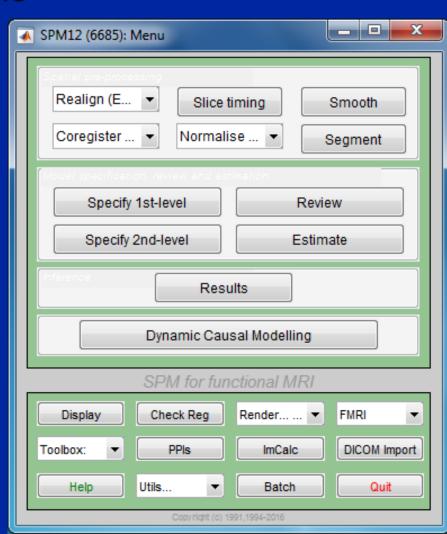

SPM Introduction

Scott Peltier

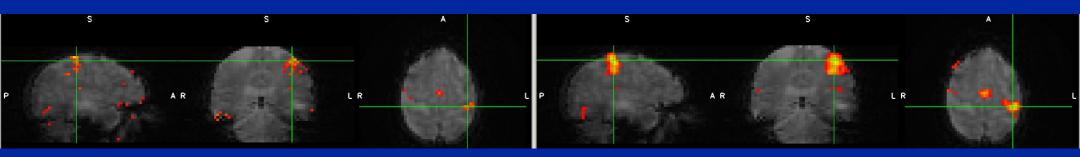

FMRI Laboratory University of Michigan

SPM!


Software to perform computation, manipulation and display of imaging data

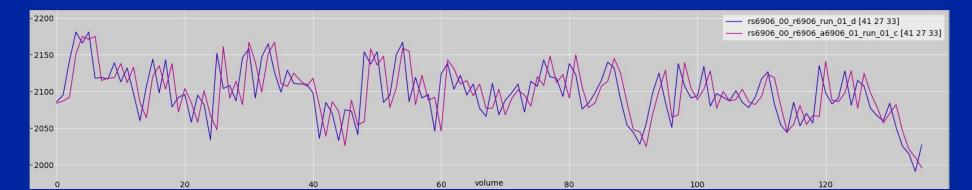
SPM: Overview

Library of MATLAB and C functions

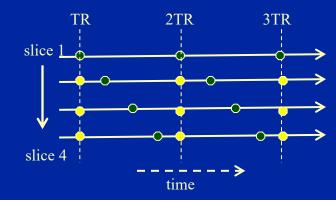

Graphical user interface

- Four main components:
 - Preprocessing
 - Model Specification & Fitting
 - Inference & Results Interrogation
 - Supplemental Tools

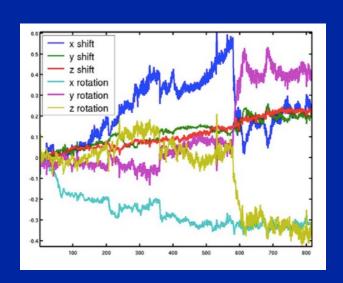
Preprocessing


 Eliminate systematic variation before statistical modeling

Before t=5.89

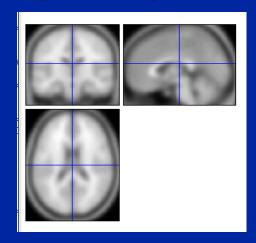

After t=10.04

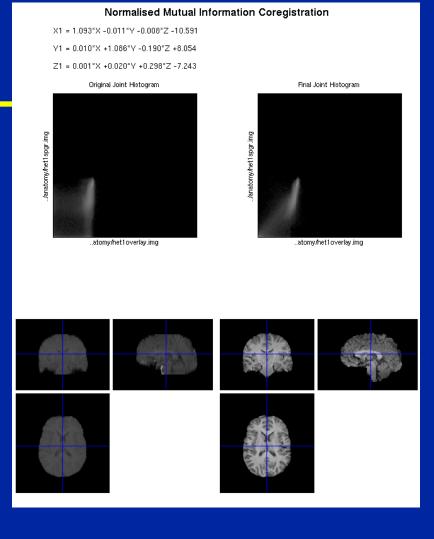
Processed with slice-timing correction, motion correction, and smoothed with 5mm isotropic kernel.

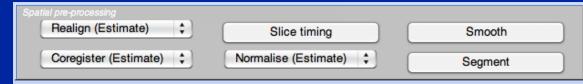


SPM: Preprocessing

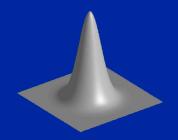
- Slice timing
 - Adjust for variable acquisition time over slices
 - In UM processing stream, this is already done

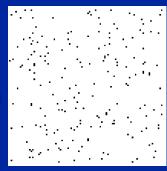

- "Realign"ment
 - Intrasubject registration
 - Motion correction
 - Done in UM stream


Spatial pre-processing		
Realign (Estimate) 💠	Slice timing	Smooth
Coregister (Estimate) 💠	Normalise (Estimate) 💠	Segment

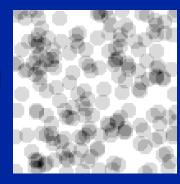

SPM: Preprocessing

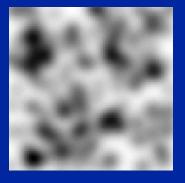
- "Coregister" ation
 - Intrasubject, intermodality registration
 - Registration of MR images with different TR/TE
- Spatial "Normalize" ation
 - Intersubject registration
 - Register subject anatomy to atlas space


SPM T1 template MNI space

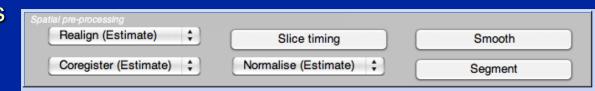


SPM: Preprocessing

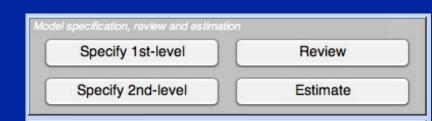

- Spatial "Smooth"ing
 - Blur data into submission...
 - To satisfy random field theory assumptions
 - For intersubject analyses


Before convolution

Convolved w/ circle



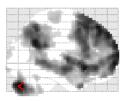
Convolved w/ Gaussian

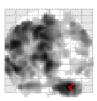

Adapted from SPM course slides

- "Segment" ation into GM/WM/CSF
 - Useful for structural studies

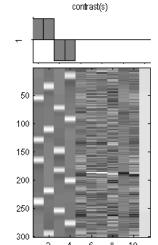
SPM: Model Specification

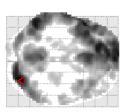
- "Specify 1st-level"
 - Specify the design, creating SPM.mat
- "Specify 2nd-level"
 - T-tests (One or two sample, paired)
 - Regression
- "Review"
 - Examine correlation of predictors
 - Power spectrum of experimental effects
- "Estimate"
 - Fit a specified model
 based on a SPM.mat file


SPM: Inference


- "Results" button
- First brings up "Contrast Manager" Can define single (t) or sets (F) of contrasts
- Then displays MIP
 - MIP = Maximum Intensity Projection
 - Glass Brain
 - Can "surf" by dragging cursor

Results

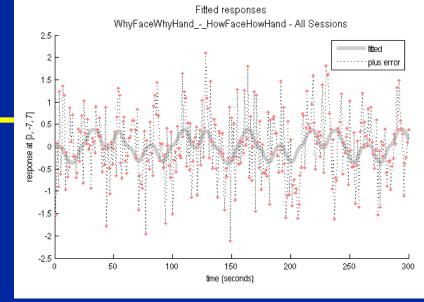

View Insert Tools Desktop Window SPM Figure Help

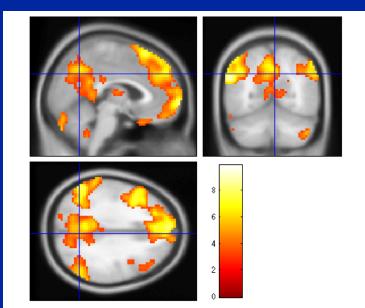

WhyFaceWhyHand - HowFaceHowHand - All Sessions

SPM{T₂₈₅}

SPMresults: \sub03\results\precooked\2x2 Height threshold T = 3.119073 {p<0.001 (unc.)} Extent threshold k = 15 voxels

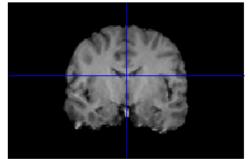
Statistics: n-values adjusted for search volume

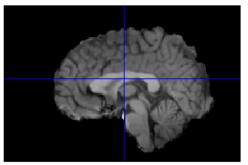

set-level		cluster-level			peak-level					papa i	mm mr		
р	С	р FIME-corr	Ø _{FDR-corr}	k _E	рипсоп	P _{FU∕E-corr}	∉ FDR-coπ	T	(Z_)	Рипсоп	mm	11111 1111	п
0.000 15	0.000	0.000	985	0.000	0.000	0.000	9.87	Inf	0.000	30	-82	-3	
						0.000	0.000	8.66	Inf	0.000	15	-88	-:
						0.000	0.000	6.75	6.50	0.000	-33	-82	-:
		0.000	0.000	8757	0.000	0.000	0.000	9.26	Inf	0.000	-9	71	
						0.000	0.000	9.18	Inf	0.000	-54	-58	:
						0.000	0.000	9.18	Inf	0.000	-54	17	
		0.000	0.000	1719	0.000	0.000	0.000	7.64	7.28	0.000	-3	-49	:
						0.000	0.000	7.23	5.92	0.000	-3	-67	
						0.000	0.000	7.04	6.75	0.000	-6	-55	
		0.000	0.000	383	0.000	0.000	0.000	6.96	6.68	0.000	51	-64	
						0.000	0.000	6.37	6.16	0.000	54	-61	
						0.055	0.011	4.75	4.66	0.000	35	-58	
		0.000	0.000	239	0.000	0.011	0.002	5.18	5.06	0.000	-9	11	
						0.145	0.023	4.53	4.45	0.000	-3	-13	
						0.244	0.039	4.38	4.30	0.000	15	11	
		0.040	0.015	57	0.003	0.016	0.003	5.10	4.99	0.000	60	-46	
		0.170	0.049	36	0.015	0.096	0.015	4.65	4.56	0.000	3	20	-
		0.056	0.019	52	0.005	0.290	0.046	4.32	4.25	0.000	6	-52	
						0.921	0.258	3.71	3.67	0.000	-3	-55	-
		0.000	0.000	180	0.000	0.311	0.049	4.30	4.23	0.000	30	-25	
						0.353	0.056	4.25	4.18	0.000	24	-31	
		0.551	0.151	19	0.064	0.394	0.060	4.21	4.15	0.000	-18	-103	-:
				table sho	ws 3 local n	naxima more t	han 8.0mm a	apart –					

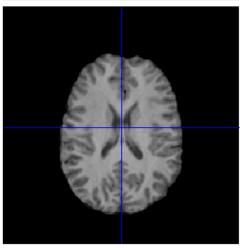

Height threshold: T = 3.12, p = 0.001 (1.000) Extent threshold: k = 15 voxels, p = 0.095 (0.698)Expected voxels per cluster, <k> = 5.537 Expected number of clusters, <c> = 1.20 FWEp: 4.819, FDRp: 4.298, FWEc: 57, FDRc: 36 Degrees of freedom = [1.0, 285.0] FWHM = 11.4 11.1 10.2 mm mm mm; 3.8 3.7 3.4 {voxels} Volume: 1700352 = 62976 voxels = 1180.1 resels Voxel size: 3.0 3.0 3.0 mm mm mm; (resel = 47.92 voxels) Page 1

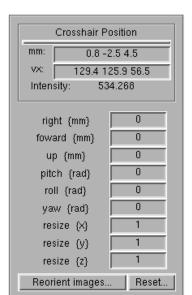
SPM: Inference

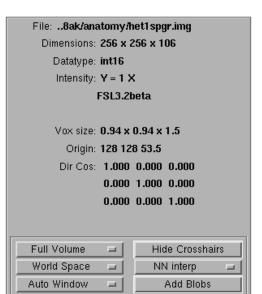
- Interactive window
 - p-values
 - Correced for whole brain or subregion
 - Plotting of time courses
 - "Overlays"
 - Superimpose results on other images
 - Current location and value

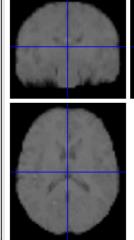


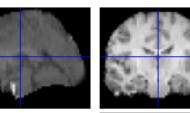


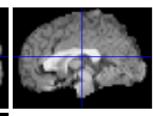

SPM: Miscellaneous Tools


- "Display"
 - Displays image with orthogonal sections
 - Check intensity values
 - Change origin
 - Change world space
 - i.e. Apply rotations/translations

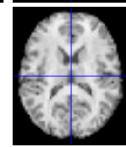


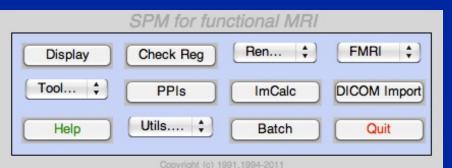


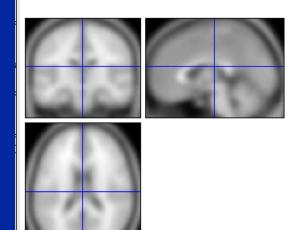




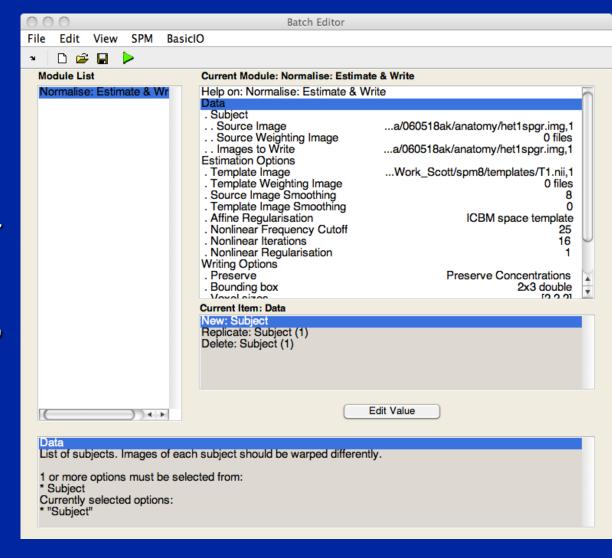
SPM: Miscellaneous Tools


- "Check Reg"
 - Display multiple images
 - Essential tool for assessing alignment of images
 - All images are displayed in the space of the first image





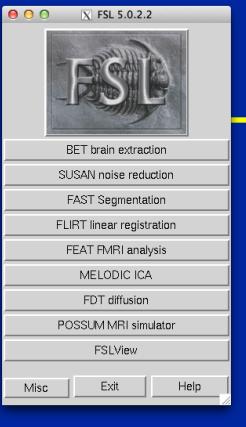



SPM: Miscellaneous Tools

- "ImCalc"
 - Image calculator
 - Give one or more images, perform MATLAB arithmetic and write out result
- "Utils"
 - Change directory
 - Results are written to current directory!
 - Delete files, etc.

SPM12 Batch Editor

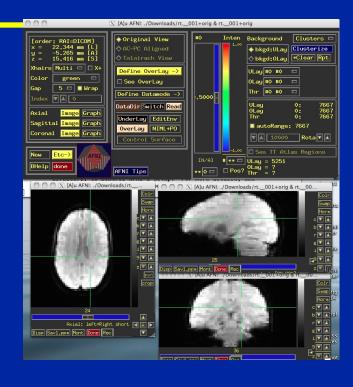
- Allows jobs to be saved, re-loaded, changed
- Helps remove "Oops!" factor
- Multiple steps can be loaded, run at once

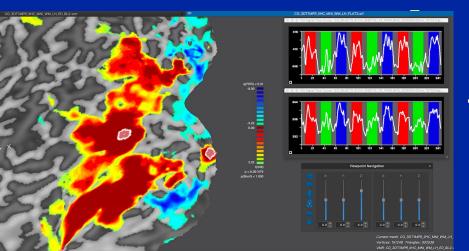


SPM: Perspective

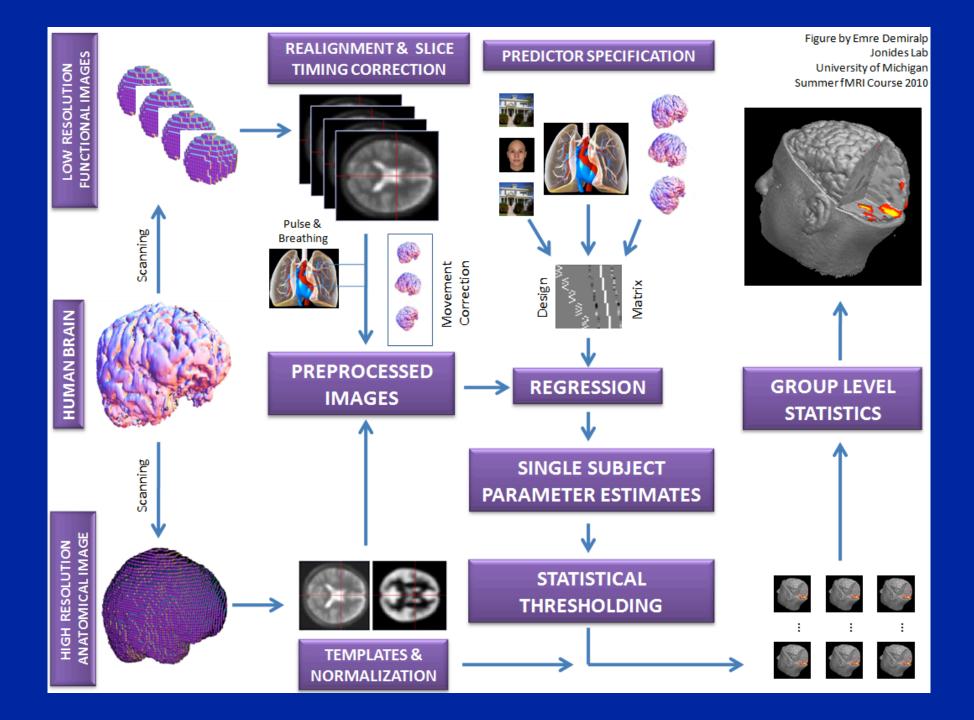
- SPM tries to be a single solution for all fMRI processing and analysis, but there can be no such thing!
 - FMRI is a rapidly evolving field where each dataset has huge number of observations!
- Don't let SPM be a black box!
- Understand what each component does
- Understand how to get at the data
 - e.g. using 'Display', 'Check Reg'

Resources


- SPMweb site: http://www.fil.ion.ucl.ac.uk/spm/
 - Introduction to SPM
 - SPM code download: SPM12 (also older versions)
 - Documentation & Bibliography
 - SPM course videos
 - Example data sets
 - SPM extensions
 - SPM email discussion list
- Other software packages can complement SPM
 - MRIcron: https://people.cas.sc.edu/rorden/mricron/index.html
 - Quick and easy to read, display, and convert image data



Alternatives


- FSL: http://www.fmrib.ox.ac.uk/fsl
 - Open source
 - Comprehensive tools for FMRI and DTI, has nice ICA analysis tool (MELODIC)
 - Free

- AFNI: http://afni.nimh.nih.gov
 - Open source
 - Active community, multiple plugins

- BrainVoyager: http://www.brainvoyager.com
 - Excellent visualization
 - Closed source, ~\$7k

SPM Spatial Transformations

Imaging data formats

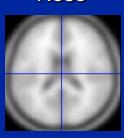
- Analyze format
 - img Raw, binary data; 3D or 4D
 - hdr Small binary header
 - Image dimension
 - Voxel size

Historical

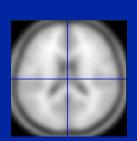
Current

NIFTI format

- .img + .hdr
- Like Analyze, but different .hdr definition
- nii Single file! Header and Image file concatenated
- World space transformation coded in NIFTI header


Is Left Right?

- Two conventions for viewing images
 - Neurological
 - On the screen, Left is Left side of subject
 - As if standing behind the head of the patient
 - Radiological
 - On the screen, Left is Right side of subject
 - As if standing at the foot of the patient


Standard in clinical radiology is, um, radiological

- SPM always uses Neurological convention
 - Default for Analyze set by defaults.analyze.flip in spm defaults.m
 - flip = 0 ,Neuro., flip = 1 ,Rad.
 - NIFTI images allegedly have no ambiguity about left & right

Nose

R

R

Coregister & realignment

- Coregistration & Realignment are rigid body transformations
 - Subject's head doesn't change size or warp between scans
 - Well, actually...
- Each requires a "Reference" and a "Source"
 - Reference: Fixed image
 - Source: Image that is transformed
- SPM modifies the header of the object image
 - Unless you explicitly ask it to, it doesn't write out a new image
 - Saves lots of disk space!

Voxel space vs. world space

- Voxel Space
 - Just the original image
 - No reorientations or flips
- World Space
 - Space defined by transformation from voxel to mm matrix M
 - Let v be a voxel location indexed from (1,1,1)
 - Then w=M*[v;1] is that location in world space, in mm
 - Can represent rotations, translations and flips

Data Fresh from fMRI Lab

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

High-res anatomy t1spgr.nii

MNI Atlas Space

Template image T1.nii scalped_avg152T1.nii

Coregistration

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

Reference

High-res anatomy t1spgr.nii

Source

MNI Atlas Space

Template image T1.nii scalped_avg152T1.nii Coregister button

Sets new world space in NIFTI header

Determined from: Rigid body, M.I. registration of high-res to low-res anatomy

After Coregistration

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

High-res anatomy t1spgr.nii (NIFTI header)

MNI Atlas Space

Template image T1.nii scalped avg152T1.nii

Spatial Normalization

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

High-res anatomy t1spgr.nii (NIFTI header)

MNI Atlas Space

Template image T1.nii scalped_avg152T1.nii **Normalize** button

Creates y_*.nii file

Determined from:

Deformation fields calculated using segmented images

Spatial Normalisation

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

High-res anatomy t1spgr.nii (NIFTI header)

MNI Atlas Space

Template image T1.nii scalped avg152T1.nii y_*.nii

file maps any

Functional Space image to MNI space!

After "Writing Normalized"

Functional Space

Functional images raprun_01.nii

Low-res anatomy t1overlay.nii

High-res anatomy t1spgr.nii (NIFTI header)

MNI Atlas Space

Template image T1.nii scalped_avg152T1.nii Normalized images wt1spgr.nii wraprun 01.nii

Group Analysis: Strategy 1 Only transform contrast img's

rap_run's

beta's con's spmT's

Intrasubject analysis result

y_*.nii

MNI Atlas Space

wcon's

Intrasubject analysis contrast images, transformed into atlas space (w/ _sn.mat), ready for group analysis

Group Analysis: Strategy 2 Transform all functionals

Functional Space

rap_run' s

y_*.nii

MNI Atlas Space

wrap_run's

beta's con's spmT's

All functional data transformed into atlas space

Intrasubject analysis result

con images ready for group analysis (already in atlas space)

Normalization recommendations

- If not doing segmented normalization, with 'scalped' brains use 'scalped' template
 - Scalped template scalped_avg152T1.nii
 - Should give best results
 - We don't care about scalp alignment!
- Make sure WM equal in brightness
 - T1's can have inhomogeneity artifact, where center of volume is brighter
 - Should apply homogeneity correction (bias correction)
 - UM: make sure to use (e)ht1spgr, (e)ht1overlay